
Syllabus
For

4 years Undergraduate Programme
of

Bachelor of Computer Application
(BCA)

(as per NEP 2020 guideline)

NORTH-EASTERN HILL UNIVERSITY
MEGHALAYA

Course Structure

1st Semester
Sub Code Subject Name L T P End Sem

Exam
IA Total Credits

Th Pr T Th Pr T
BCA - 100 MAJOR: Problem Solving and

Programming in C
3 0 2 56 19 75 25 100 3 1 4

BCA - 100 MINOR: Problem Solving and
Programming in C

3 0 2 56 19 75 25 100 3 1 4

SEC - 130 SEC: Cyber Security (Existing) 2 0 2 40 16 56 19 75 2 1 3

MDC -112 MDC: Fundamentals of Computer
Systems (Existing)

3 0 0 56 0 56 19 75 3 0 3

AEC: 3

VAC: 3

Total 20

2nd Semester
Sub Code Subject Name L T P End Sem

Exam
IA Total Credits

Th Pr T Th Pr T
BCA - 150 MAJOR: Web development using

PHP and MySQL, Server Side
Frameworks

3 0 2 56 19 75 25 100 3 1 4

BCA - 150 MINOR: Web development using
PHP and MySQL, Server Side
Frameworks

3 0 2 56 19 75 25 100 3 1 4

SEC - 183 SEC: Python Programming
(Existing)

2 0 2 40 16 56 19 75 2 1 3

MDC: 75 3

AEC: 75 3

VAC: 75 3

Total 20
● To exit with UG Certificate, students have to complete 40 credits and also an

internship/vocational/apprenticeship/community and service/field-based learning/minor project of 4
credits

Internship* (120 hours) 75 25 100 4

2

3rd Semester
Sub Code Subject Name L T P End Sem

Exam
IA Total Credits

Th Pr T Th Pr T
BCA - 200 MAJOR:

(a) VB.NET Programming
(b) Object Oriented

Programming using C++

3 0 2 56 19 75 25 100 3 1 4

BCA - 201 MAJOR: Digital Logic and
Computer Fundamentals

4 0 0 75 0 75 25 100 4 0 4

SEC: 3

MDC: 3

AEC: 2

VTC: 4

Total 20

4th Semester
Sub Code Subject Name L T P End Sem

Exam
IA Total Credits

Th Pr T Th Pr T
BCA - 250 MAJOR: Data Structure using C 3 0 2 56 19 75 25 100 3 1 4

BCA - 251 MAJOR: Computer System
Architecture

4 0 0 75 0 75 25 100 4 0 4

BCA - 252 MAJOR: Database Management
Systems

3 0 2 56 19 75 25 100 3 1 4

BCA - 253 MAJOR: Operating System and
Shell Programming

3 0 2 56 19 75 25 100 3 1 4

VTC: 100 4

Total 20
● To exit with UG Diploma, students have to complete 80 credits and also an

internship/vocational/apprenticeship/community and service/field-based learning/minor project of 4
credits

Internship* (120 hours) 75 25 100 4

3

5th Semester
Sub Code Subject Name L T P End Sem

Exam
IA Total Credits

Th Pr T Th Pr T
BCA-300 MAJOR: Software Engineering 4 0 0 75 0 75 25 100 4 0 4

BCA-301 MAJOR: Mathematics I 3 0 2 56 19 75 25 100 3 1 4

BCA-302 MAJOR: Advanced Python
Programming

3 0 2 56 19 75 25 100 3 1 4

BCA-302 MINOR: Advanced Python
Programming

3 0 2 56 19 75 25 100 3 1 4

BCA-303 INTERNSHIP (120 hours) 0 75 75 25 100 0 4 4

Total 20

6th Semester
Sub Code Subject Name L T P End Sem

Exam
IA Total Credits

Th Pr T Th Pr T
BCA-350 MAJOR: Mathematics II 4 0 0 75 0 75 25 100 4 0 4

BCA-351 MAJOR: Data Communications
and Networking

4 0 0 75 0 75 25 100 4 0 4

BCA-352 MAJOR: Object Oriented
Programming in JAVA

3 0 2 56 19 75 25 100 3 1 4

BCA-353 MAJOR: Data Mining 3 0 2 56 19 75 25 100 3 1 4
VTC: 100 4

Total 20

4

7th Semester
Sub Code Subject Name L T P End Sem

Exam
IA Total Credits

Th Pr T Th Pr T

BCA - 400 MAJOR: Research Methodology
and Proposal Writing

4 0 0 75 0 75 25 100 4 0 4

BCA - 401 MAJOR: Text Analytics 3 0 2 56 19 75 25 100 3 1 4

BCA - 402 MAJOR: Theory of Computation
and Compiler Design

4 0 0 75 0 75 25 100 4 0 4

BCA - 403 MAJOR: Internet of Things 3 0 2 56 19 75 25 100 3 1 4

BCA - 404 MINOR: Internet of Things 3 0 2 56 19 75 25 100 3 1 4

Total 20

8th Semester
Sub Code Subject Name L T P End Sem

Exam
IA Total Credits

Th Pr T Th Pr T
BCA-450 MAJOR: Machine Learning 3 0 2 56 19 75 25 100 3 1 4

BCA-451 MINOR: Machine Learning 3 0 2 56 19 75 25 100 3 1 4

BCA-452 Research Project/Dissertation
(For Students eligible for
Honours with Research) *

12

BCA-453 MAJOR: Computer Oriented
Numerical Methods

3 0 2 56 19 75 25 100 3 1 4

BCA-454 MAJOR: Mobile Application
Development

3 0 2 56 19 75 25 100 3 1 4

BCA-455 MAJOR: Artificial Intelligence 3 0 2 56 19 75 25 100 3 1 4

Total 20

Prepared according to NEHU guidelines communicated to Principals of all affiliated Colleges,
by CDC via letter No CDC/NEP2020/2022/-1818 dated 15th September 2023

In line with:

● Ordinance OC-8 (2023) as adopted in the 110th Academic Council
● Regulation RC-12 (2023) as adopted in the 110th Academic Council

* Students securing at least 75% aggregate marks on completion of third academic year are eligible
for Honours with Research of a 4-year Bachelor's Degree Programme. Those securing less than 75%
are eligible for joining Honours only. Hence BCA-453 is of research nature (12 credits)

Students eligible for Honours with Research shall offer BCA-452 in lieu of BCA-453, BCA-454 and
BCA-455

5

Semester wise Course Content of the 4 years BCA Syllabus

6

Semester III
VB.NET PROGRAMMING

(MAJOR : T + P)
BCA -200.a

Paper Title: VB.Net Programming
Paper Code: BCA - 200.a
Number of Hours Per Week: (L+T+P= 3+0+2)
Total Contact Hours: 75
Number of Credits: 4 (Th: 3 + Pr: 1)

Course Objectives (COs):
● CO1: Introduce Visual Basic.NET (VB.NET) as a modern, object-oriented

programming language.
● CO2: Enable students to develop Windows-based and web applications using

VB.NET.
● CO3: Familiarise students with the .NET framework, which provides a rich set of

classes supporting desktop, Internet, and database programming.

Learning Outcomes (LOs):
On successful completion of the course, students will be able to:

● LO1: Acquire fundamental programming skills
● LO2: Learn Object-Oriented Programming Proficiency
● LO3: Learn Database Connectivity
● LO4:Web Development Basics
● LO5:Will be proficient in Visual Basic.NET and capable of building a variety of

applications in the .NET framework

Outline of the Course:

7

UNIT TOPIC Hours External
Marks

Internal
Marks

I Introduction to VB.Net, Exception Handling 15 18

19
II Library, Function, Procedures, Object Oriented

Programming 15 19

III File Management, ADO.NET, ASP.NET & Web
Services 15 19

IV Practical 30 19 6

Total 75 75 25

CONTENTS
UNIT I 15 Hours
Introduction to VB.NET: NET framework, Variables: Variable Type, Variable Names,
Variable Declarations – explicit and implicit, Scope and lifetime of variables, Constants,
Symbolic Constants Arrays – one and multi-dimensional, jagged arrays, Arithmetic and
string operators, operator precedence, Expressions, Logical operators. Controls in General,
method, events and properties of Controls and Components, Loop Structure: Decision
Structures – If … Then … Else, Select Case; Loop Structures – For ... Next, Do ... Loop,
While ... End While, With ... End with, For Each … Next, Exit. Exception Handling:
Structured Exception handling, Catch Expressions, throw statement, On Error statement,
Resume statement, Err object.

UNIT II 15 Hours
Procedures: Sub Procedures and Function Procedures, Passing arguments, Parameter Array
Arguments. Library Functions: String Class, Math Class. Object Oriented Programming:
OOP Fundamentals – Class and objects, Creating Classes, Class Properties, Class Methods,
Class Constructors, Shared Methods, Shared Variables, Class Event,Class Access Options,
Interfaces, Inheritance, Encapsulation and Abstraction. Inheritance, Polymorphism, Base
Class Design Considerations, Me Keyword, My Base Keyword, My Class Keyword.
Building Custom Windows Controls: Designing Windows Controls, Enhancing Existing
Windows Controls, Building Compound Controls.

UNIT III 15 Hours
File Management:File Fundamentals, Exception in File Access, File Access, FileStream
Class, StreamReader Class, StreamWriter Class, FileInfo Class. ADO.NET:
OLeDbConnection Class, OLeDbAdapter Class, DataSet Class, DateView Class. ASP.NET:
Controls for Web Applications, PageLoad(), Event, Session Object, Application Object,
Events in Web Application, Web Config. Web Form Controls: Label, Textbox, Button,
Hyperlink, Listbox, Validation Controls. Database Access in Web Application: DataReader
Class, Repeater Control, DataList Control, DataGrid Control. Introduction to Web Services:
Creating Simple Web Services and implementation.

UNIT IV 30 Hours

Practicals from UNIT I, UNIT II and UNIT III.
Suggested Basic Experiments:

1) Write a program to find prime numbers between the range of start number and end
number.

2) Design a form with suitable controls to input a single digit number and write
appropriate event handlers to check if the number is automorphic or not. A number is
called automorphic if the last digit of the square of the number is the same as the
number itself. (e.g., 6)

3) Design a form with suitable control and write appropriate event handlers to generate a
list of Armstrong numbers from ‘m’ to ‘n’.

4) In the colour code that is used in resistors, the different colours have values as follows:
Black=0, Brown=1, Red=2, Orange=3, Yellow=4, Green=5, Blue=6, Violet=7, Gray=8
and White=9. The value of the resistor is indicated by drawing three coloured bands

8

round it. The first two bands indicate the first two digits in the numerical value of the
resistance, while the third band is the decimal multiplier, i.e., it gives the number of
zeros after the two digits. For example, if the bands have colours, Green-Blue-Orange,
successively, then the numerical value is 56000. Design a form with suitable controls
and write appropriate event handlers to accept the colours from the user and print the
equivalent numerical.

5) Using functions, write a program to calculate the simple interest accrued on a given
principal using the formula SI = (Principal x Rate x Time)/100. The user input and the
output thereof must be in different forms. The input form must have a textbox where the
principal will be entered by the user, a vertical scroll bar for the rate of interest, and a
list box from where the user can select the time (in years.) On clicking a button, the
function must calculate the SI taking values from the textbox, scrollbar, and list box,
and the result shown in the second form. Provision must also be kept for adding and
removing items to and from the listbox. The items in the listbox appear as: 1 year; 2
years; 3 years etc.…. up to 10 years.

6) Write a program to search for a pattern in a string, display the position of the first
occurrence of the pattern.

7) Write a program to search for an element in an array using either Binary search or
Linear search

8) Write a program to find the sum of each row, column and diagonals of a square matrix
9) Write a program to sort elements in an array.
10) A line of text is entered by the user. Write a program to display the shortest and longest

word.
11) Write a program with suitable controls to determine if the input string is a palindrome

or not.
12) Write a program to do the following operations: Read any two positive integer operands

(say op1 & op2) and one-character type operator (say opr). Note that opr is any
mathematical operator. Depending upon the operator, do the appropriate operation. e.g.
if opr is '+' then the display the value obtained by evaluating the expression (op1 + op2)

13) Write a program to generate an ordinary calculator. The calculator should support the
facilities as Addition, Subtraction, Multiplication, Division, storing in Memory,
Clearing Memory and adding to memory etc. The display of the calculator should
support up to 10 digits including decimal point. Your application should use a control
array.

14) Design a form to create a conversion calculator like Decimal number to Binary, Octal &
Hexadecimal. Binary number to Decimal, Octal & Hexadecimal. Octal number to
hexadecimal, binary, decimal etc.

Suggested Advance Practicals:
15) Create a class called Reverse with a class property to store a number whose reverse is to

be calculated. A class must have a constructor to initialise the class property and a
function to find the reverse. Display the reverse and a message if the number is a
palindrome number or not. Add a window application form to test the class.

16) Create a class titled Shape, the class must have functions with the same name Area to
perform the following:

a) Return the area of the circle
b) Return the area of the square
c) Return the area of a rectangle.

Design the form appropriately to test the class.

9

17) Write an application to write a line of text to a file, then read the file, count and display
the number of vowels and words present in the text.

18) Create the following table Student(id, name, course, DOB, address) Write vb.net
application to Add records, view all the records, Delete the particular record. View all
the students who are studying in course BCA.

19) Create a database in a database Server with two tables Biodata and Marks. The table
biodata contains the fields names, RollNo (RollNo is unique), Gender, State, District,
City, Class, DOB, and the table Marks contain the fields RollNo, Physics, Chemistry,
Mathematics. Develop an ASP page to add, edit and delete records from the tables.
Provision should also be made to display all the records of a given class along with each
one’s average mark, in a tabular format. (The class can be selected from a listbox).

20) Create a web service to add two numbers. Also develop a client program that uses the
web service.

21) Create a web service to check if the number is a prime number or not. Also develop a
window application that uses the web service.

Instructions to Paper Setter (Theory Examination):
● Questions should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED Marks

I 2 1 18

II 2 1 19

III 2 1 19

Instructions to Paper Setter (Practical Examination):
● Two sets of question papers should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED Marks

I 2 1 6

II 2 1 6

III 2 1 7

Exam Duration:

THEORY PRACTICAL

2 hours1
2

3 hours

10

Distribution of marks for practical
10% : Syntax and input/output screens
30% : Logic and efficiency (source code, pseudocode, and algorithm)
20% : Error trapping (illegal or invalid input, stack overflow, underflow,

insufficient physical memory etc.)
20% : Completion
20% : Result

Recommended Reading:

Text Books:
1. E. Petroutsos, “Mastering Visual Basic.NET”, BPB Publications, 2004
2. M. Halvorson, “Microsoft Visual Basic.NET Step by Step”, Prentice Hall of India

Pvt. Ltd., 2002
3. C. Komalavalli and S. K. Sahu "Essential of .Net Programming Theory and

Application", Ane Books Pvt Ltd, 2nd Edition, 2020

Reference Books:
1. B. Evjen, J. Bares, et al, “Visual Basic.NET Programming Bible”, IDG Books India

(P) Ltd., New Delhi, 2002.
2. P. Bembey and K. Kaur, “Microsoft Visual Basic.NET Professional Projects”,

Prentice Hall of India Pvt. Ltd., New Delhi, 2002
3. P. Aitken, “Visual Basic.NET Programming”, Dreamtech, New Delhi, 2002

11

Object Oriented Programming using C++
(MAJOR : T + P)

BCA-200.b

Paper Title: Object Oriented Programming using C++
Paper Code: BCA-200.b
Number of Hours Per Week : (L+T+P = 3+0+2)
Total Contact Hours : 75
Number of Credits: 4 (Th: 3 + Pr: 1)

Course Objectives (COs):
● CO1: To inculcate knowledge on the key principles of Object-Oriented Programming.
● CO2: Understand and implement Object Oriented Programming constructs using

C++.
● CO3: Proficiency in C++ programming using standard C++ libraries and debugging

tools to develop robust applications.

Learning Outcomes (LOs):
On successful completion of the course, students will be able to:

● LO1: Understand Core Object Oriented Concepts such as encapsulation, inheritance,
and polymorphism, and apply them to design and implement C++ programs.

● LO2: Create well-designed and modular classes that encapsulate data and behaviour,
promoting code reusability, maintainability, and scalability in C++ applications.

● LO3: Effectively apply inheritance and polymorphism to design and implement class
hierarchies, promoting code reuse and flexibility in handling diverse types of objects.

● LO4: Implement proper memory management techniques in C++ programs, including
dynamic memory allocation and deallocation, to avoid memory leaks and ensure
efficient resource utilisation.

Outline of the Course:

UNIT Topic Hours External
Marks

Internal
Marks

I
Introduction to C++: key concepts of
Object-Oriented Programming, control
structures , functions

15 18

19II Classes and Objects, Function overloading and
Operator overloading 15 19

III Inheritance, Pointers, Polymorphism, Exception
Handling 15 19

IV Practical 30 19 6
Total 75 75 25

CONTENTS

UNIT I 15 Hours
Introduction to C++: key concepts of Object-Oriented Programming, Advantages of Object
Oriented Languages, I/O in C++, C++ Basic data types, User defined data types, Variable
Declaration, Dynamic initialization, Reference variables, Operators in C++: scope resolution

12

operator, memory management operators, typecast operator, Control Structures: Decision
Making and Statements : If ..else, jump, goto, break, continue, Switch case statements, Loops
in C++ : for, while, do - functions in C++.

UNIT II 15 Hours
Classes and Objects: Declaring Objects, Defining Member Functions, Static data members
and functions, Array of objects, Friend functions, Constructor and Destructors, Operator
Overloading: Overloading unary and binary operators, Overloading with Friend functions,
Type conversion.

UNIT III 15 Hours
Inheritance: Types of Inheritance – Single, Multilevel, Multiple, Hierarchal, Hybrid,
Multipath inheritance ,Virtual base Classes, Abstract Classes, Constructors in derived classes ,
Pointers: Pointer to object ,Compile time and Runtime Polymorphism, this pointer, Pointers
to derived classes, Virtual functions, Exception Handling: Basics of Exception Handling –
throwing mechanism, catching mechanism, rethrowing an exception.

UNIT IV 30 Hours
Practicals from UNIT I, UNIT II and UNIT III

Suggested Experiments:
1. Write a temperature-conversion program that gives the user the option of converting

Fahrenheit to Celsius or Celsius to Fahrenheit. Then carry out the conversion. Use
floating-point numbers. Interaction with the program might look like this:

Type 1 to convert Fahrenheit to Celsius,
2 to convert Celsius to Fahrenheit: 1
Enter temperature in Fahrenheit: 70
In Celsius that’s 21.111111

2. Write a program in C++ to find the Greatest Common Divisor (GCD) of two numbers
3. Write a C++ program that asks the user to enter positive integers in order to process

count, maximum, minimum, and average or terminate the process with -1.
4. Write a program in C++ to display the sum of the series [1+x+x^2/2!+x^3/3!+....].
5. Write a program in C++ to display the pattern like a right angle triangle with numbers.

Sample Output:
Input number of rows: 5
1
12
123
1234
12345

6. Create a four-function calculator for fractions. (See Exercise 9 in Chapter 2,and
Exercise 4 in this chapter.) Here are the formulas for the four arithmetic operations
applied to fractions:
Addition: a/b + c/d = (a*d + b*c) / (b*d)
Subtraction: a/b - c/d = (a*d - b*c) / (b*d)

13

Multiplication: a/b * c/d = (a*c) / (b*d)
Division: a/b / c/d = (a*d) / (b*c)
The user should type the first fraction,an operator,and a second fraction. The program
should then display the result and ask whether the user wants to continue.

7. Raising a number n to a power p is the same as multiplying n by itself p times. Write a
function called power() that takes a double value for nand an int value for p,and
returns the result as a doublevalue. Use a default argument of 2 for p, so that if this
argument is omitted, the number n will be squared. Write a main() function that gets
values from the user to test this function

8. Write a function called hms_to_secs()that takes three int values—for hours, minutes,
and seconds—as arguments,and returns the equivalent time in seconds (type long).
Create a program that exercises this function by repeatedly obtaining a time value in
hours, minutes and seconds from the user (format 12:59:59), calling the function and
displaying the value of seconds it returns.

9. Write a function called swap()that interchanges two int values passed to it by the
calling program. (Note that this function swaps the values of the variables in the
calling program,not those in the function.) You’ll need to decide how to pass the
arguments. Create a main() program to exercise the function.

10. Create a class called timedate has separate int member data for hours,minutes,and
seconds. One constructor should initialise this data to 0, and another should initialise
it to fixed values. Another member function should display it, in 11:59:59 format. The
final member function should add two objects of type time passed as arguments. A
main() program should create two initialised time objects and one that isn’t initialised.
Then it should add the two initialised values together, leaving the result in the third
time variable. Finally it should display the value of this third variable.

11. Create an employee class where the member data should comprise an int for storing
the employee number and a float for storing the employee’s compensation. Member
functions should allow the user to enter this data and display it. Write a main() that
allows the user to enter data for three employees and display it.

12. Extend the employee class of Exercise 14 to include a date and an etype enum. An
object of the date class should be used to hold the date of first employment; that is, the
date when the employee was hired. The etype variable should hold the employee’s
type: labourer, secretary, manager and so on. These two items will be private member
data in the employee definition, just like the employee number and salary. You’ll need
to extend the getemploy() and putemploy() functions to obtain this new information
from the user and display it. Write a main() program that allows the user to enter data
for three employee variables and then displays this data

13. Write a C++ program to sort an array of elements
14. Write a C++ program to implement a class called Circle that has private member

variables for radius. Include member functions to calculate the circle's area and
circumference.

15. Write a C++ program to create a class called Rectangle that has private member
variables for length and width. Implement member functions to calculate the
rectangle's area and perimeter.

16. Write a C++ program to create a class called Person that has private member variables
for name, age and country. Implement member functions to set and get the values of
these variables.

17. Write a C++ program to implement a class called BankAccount that has private
member variables for account number and balance. Include member functions to
deposit and withdraw money from the account.

14

18. Write a C++ program to create a class called Triangle that has private member
variables for the lengths of its three sides. Implement member functions to determine
if the triangle is equilateral, isosceles, or scalene.

19. A bookshop maintains the inventory of books that are being sold at the shop. The list
includes details such as author, title, price, publisher and stock position. Whenever a
customer wants a book, the sales person inputs the title and author and the system
searches the list and displays whether it's available or not. If it is not, an appropriate
message is displayed. If it is, then the system displays the book details and requests
for the number of copies required. If the requested copies are available, the total cost
of the requested copies is displayed; otherwise the message “Required copies not in
stock” is displayed.

20. Design a system using a class called books with suitable member functions and
constructors. Use new operator in constructors to allocate memory space required

21. Write a C++ program to implement a class called Date that has private member
variables for day, month, and year. Include member functions to set and get these
variables, as well as to validate if the date is valid.

22. Write a C++ program to implement a class called Student that has private member
variables for name, class, roll number, and marks. Include member functions to
calculate the grade based on the marks and display the student's information.

23. Write a C++ program to implement a class called Shape with virtual member
functions for calculating area and perimeter. Derive classes such as Circle, Rectangle,
and Triangle from the Shape class and override virtual functions accordingly.

24. Write a C++ program to dynamically create an object of a class using the new
operator.

25. Write a program with the following:
a. A function to read two double type numbers from the keyboard
b. A function to calculate the division of these two numbers
c. A try block to throw an exception when a wrong type of data is keyed in
d. A try block to detect and throw an exception if the condition “divide by zero”

occurs
e. Appropriate catch blocks to handle the exceptions thrown

Instructions to Paper Setter (Theory Examination):
● Questions should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED Marks

I 2 1 18

II 2 1 19

III 2 1 19

15

Instructions to Paper Setter (Practical Examination):
● Two sets of question papers should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED Marks

I 2 1 6

II 2 1 6

III 2 1 7

Exam Duration:

THEORY PRACTICAL

2 hours1
2

3 hours

Distribution of marks for practical
10% : Syntax and input/output screens
30% : Logic and efficiency (source code, pseudocode, and algorithm)
20% : Error trapping (illegal or invalid input, stack overflow, underflow,

insufficient physical memory etc.)
20% : Completion
20% : Result

Recommended Reading:

Text Books:
1. E. Balagurusamy, “Object-Oriented Programming with C++”, Tata Mc Graw Hill, 8th

Edition, 2020.
2. H. Schildt, “C++: The Complete Reference”, McGraw Hill Education, 4th Edition,

2017

Reference Books:
1. A. N. Kamthane, “Object-Oriented Programming with ANSI and Turbo C++”,

Pearson Education, Singapore, 2003.
2. M. Litvin and G. Litvin, “C++ for you”, Vikas Publication, 2002

16

Digital Logic and Computer Fundamentals
(MAJOR : T)
BCA-201

Paper Title: Digital Logic And Computer Fundamentals
Paper Code: BCA - 201
Number of Hours per Week: (L+T+P = 4+0+0)
Total Contact Hours : 60
Number of Credits: 4

Course Objectives (COs):
● CO1: Provide a comprehensive understanding of basic concepts and applications in

Digital Logic and Computer Fundamentals.
● CO2: Cover topics such as Logic Gates, Number Systems, Boolean algebra,

Karnaugh Map, Combinational, and Sequential Circuits, Counters, and Registers.
● CO3: Equip students with a robust grounding in Digital Logic, fostering the requisite

knowledge to engage with advanced concepts in computer architecture and design.

Learning Outcomes (LOs):
On successful completion of the course, students will be able to

● LO1: Understand the Fundamentals of Computer Systems.
● LO2: Understand the fundamental concepts of Digital Logic Gates.
● LO3: Understanding Number Systems and conversion from one number system to

other number systems.
● LO4: Able to simplify Boolean expressions by means of Algebraic, Karnaugh map

and Tabulation methods.
● LO5: Understand the basic concept of circuits(Combinational and Sequential).
● LO6: Understand the working of Counters and Registers in digital computers.

Outline of the Course:
UNIT TOPIC Hours External

Marks
Internal
Marks

I Introduction to Number System and
Digital Logic Gates. 15 18

25II Boolean Algebra and Karnaugh Map 15 19

III Circuits: Combinational and Sequential 15 19

IV Counters and Registers 15 19

TOTAL 60 75 25

17

CONTENTS

UNIT I 15 Hours
Number Systems: Bit, Byte, Nibble, Word, Binary Number, Binary Arithmetic (Addition,
Subtraction, Multiplication, Division), Subtraction using r’s and (r - 1) ‘s Complement,
Hexadecimal number system, Octal number system, Conversion between number systems,
Binary codes (BCD, Error-Detection, ASCII, EBCDIC). Digital Logic Gates: Logic Gates
(AND, OR, NOT, NAND, NOR, XOR and XNOR), Realisation of other logic functions using
NAND/NOR gates.

UNIT II 15 Hours
Boolean Algebra: Boolean variables, postulates and theorems of Boolean Algebra, Boolean
functions, Simplification of Boolean expressions by algebraic method, Dual and Complement of
a Boolean expression, Canonical form, Standard form, Sum of Products and Product of Sums
Forms of Logic expression and conversion between two, conversion of expression in Standard
form into Canonical form. Karnaugh Maps: Minimization using Karnaugh map for two, three
and four variables, Sum-of Products and Products of sums simplification using K-map, Don’t
Care Conditions, Quine-McCluskey method (Tabulation method).

UNIT III 15 Hours
Combinational circuits: Introduction, block diagram. Arithmetic Circuits: Half –Adder, Full –
Adder. n-to-m line Decoder, Encoder, 2n-1 Multiplexer, De-multiplexer:2-to-4 line decoder with
enable. Sequential Circuits: Introduction, block diagram. Flip – Flops: Basic R-S flip flop
(Latch), Clocked flip-flops (Logic diagram, Graphic Symbol, Characteristic table, Characteristic
equation, Excitation table): R-S flip flop, D flip-flop, J-K flip flop, T flip flop. Master-Slave
flip-flop using R-S flip-flop graphic symbols.

UNIT IV 15 Hours
Counters: Design of a 3-bit binary counter using T flip-flops, 4-bit Binary Ripple counter using
J-K flip-flops (Mod-16), BCD Ripple counter. Synchronous Counter: 4-bit binary synchronous
counter, 4- bit up-down binary synchronous counter. Registers: 4-bit Register, 4-bit Register
with parallel load, Shift Register: Serial transfer.

Instructions to Paper Setter (Theory Examination):
● Questions should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED Marks

I 2 1 18

II 2 1 19

III 2 1 19

IV 2 1 19

18

Exam Duration:

THEORY

3 hours

Recommended Reading:

Text Books:
1. M. M. Mano, “Digital Logic and Computer design”, 5th Edition, Prentice Hall India,
2018.

Reference Books:
1. S. Salivahanan and S. Arivazhagan “Digital Circuit and Design”, 5th Edition, Oxford

University India Press, 2018
2. A. P. Malvino and D.P. Leach, “Digital Computer and Applications”, 4th Edition, Tata

Mc-Graw Hill Company, 2001.
3. J.P Hayes, “Computer Architecture and Organisation”, 4th Edition, Tata Mc-Graw

Hill Company, 2001.
4. D. P. Nagpal, “Computer Fundamentals: Concepts Systems & Applications”,

Wheeler Publishing, 2001.

19

Semester IV
Data Structure using C

(MAJOR - T + P)
BCA-250

Paper Title: Data Structure using C
Paper Code: BCA-250
Number of Hours Per Week: (L+T+P= 3+0+2)
Total Contact Hours: 75
Number of Credits: 4 (Th: 3 + Pr: 1)

Course Objectives (COs):
● CO1: The course aims to provide a thorough understanding of data structures and

their implementation using the C programming language.
● CO2: Impart skills to create data structures and optimise data processing for

problem-solving.
● CO3: Develop proficiency in implementing and manipulating data structures using

the C programming language.

Learning Outcomes (LOs):
On successful completion of the course, students will be able to:

● LO1: Develop algorithms and analyse time and space complexity to solve a problem.
● LO2: Implement various data structures viz. Array, Linked Lists, Stacks, Queues,

Trees and Graphs.
● LO3: Understanding various Searching and Sorting techniques.
● LO4: It is expected that the student has basic knowledge of C Programming.

Outlines of the Course:

UNIT TOPIC Hours External
Marks

Internal
Marks

I Design and Analysis of Algorithm; Arrays 15 18

19II Linked List, Stacks and Queues 15 19

III Trees and Graphs 15 19

IV Practical 30 19 6

Total 75 75 25

CONTENTS
UNIT I 15 Hours
Design and Analysis of Algorithm: Concepts of data structure, Abstract Data Type,
Algorithms, Different approaches to designing an algorithm, Time and Space Complexity,
Big O Notation. Arrays: Concept of 1D and 2D Arrays, Representation of 2D Arrays - Row
Major and Column Major Representation, Operations on 1D Array - Traversing, Insertion,
Deletion, Merging, Searching - Linear Search, Binary Search, Sorting - Bubble Sort,
Selection Sort, Insertion Sort, Merge Sort - Divide and Conquer Algorithm.

20

UNIT II 15 Hours
Linked List: Concepts of Singly Link List, Singly Linked List Implementations - Insertion,
Deletion, Searching, Traversing. Concepts Only - Doubly Linked List, Circular Linked List.
Stacks: Concepts of Stacks, Stack operations using Array - Push, Pop, Peek, Conversion and
Evaluation of Arithmetic Expressions - Polish Notation, Recursion. Queues: Concepts of
Queues, Queues operations using Array - Insertion and Deletion. Concepts Only - Dequeues,
Priority Queues, Circular Queues.

UNIT III 15 Hours
Trees: Introduction to Trees Concept, Basic Terminology, Binary Trees - Terminology,
Complete Binary Trees, 2-Trees, Representation of Binary Trees in the Memory, Traversing
A Binary Tree using recursion - Pre-order Traversal, In-order Traversal, Post-order Traversal,
Tree Traversal using stacks, Constructing a Binary Tree from Traversal Results. Binary
Search Trees: Operations on Binary Search Trees - Searching, Insertion, Deletion of Nodes
in BST, Concepts Only - Threaded Binary Trees, AVL Trees. Graphs: Introduction to
Graphs, Graph Terminology, Directed Graphs Terminology, Sequential representation of
Graph - Adjacency Matrix, Path matrix, Linked representation of Graphs - Adjacency List,
Operations on Graphs - Insertion, Deletion, Searching, Graph Traversal Algorithm -
Breadth-first search, Depth-first search. P, NP, NP-Hard and NP-Complete Problems - Basic
concepts only

UNIT IV 30 Hours
Practicals from UNIT I, UNIT II and UNIT III
Suggested Experiments:

1. Write a menu-driven program to:
a) Read N elements into an array
b) Print the elements of a given array
c) Insert an element at a given position
d) Delete an element from a given position of an array

2. Write a program to merge two unsorted arrays.
3. Write a program, to merge in two sorted arrays.
4. Write a program to search for an element in an array using linear search.
5. Write a program to search for an element in an array using binary search.
6. Write a program to enter ‘n’ numbers in an array. Arrange the numbers in ascending

order using the following sorting technique:
a) Bubble sort
b) Selection sort
c) Merge sort

7. Write a program to store the numbers in a 4x4 matrix. Find the sum of the numbers of
each row and the sum of the number of each column of the matrix.

8. Write a program to find the product of two matrices.
9. Write a menu-driven program to:

a) Construct a singly linked list. Assume the information part of each node
consists of only an integer key. Get input for each key from the keyboard.
Assume the input is over when the user enters –1

b) Print the information from each node
c) Delete all nodes containing a given number
d) Exit

10. Write a program to create a linked list and perform insertion and deletions of all cases.

21

11. Write a program to search for an element in a linked list. If the number is present then
display the message “Search Successful” otherwise “Search is not Successful”

12. Write a C function to insert a node appropriately to an already sorted list so that after
insertion, the new list also becomes sorted. Take care of special cases such as
inserting into an empty list. Use this function to write a program which accepts
integers at the input and at the end produces a sorted list. Assume that if the integer
read at the input is ‘0’ then your program should stop.

13. Write a menu-driven program to implement a stack using arrays. The menu should
have the following options:

a) Push on to the stack
b) Pop from the stack and print the value popped from the stack
c) Merely print the value on top of the stack
d) Exit

Error trapping should be done for underflow and overflow. Available array space
should be efficiently used (i.e. there cannot be overflow if there is more than 1 empty
element in the array). Assume that the information part of a stack element is only an
integer.

14. Write a menu-driven program to implement a stack using arrays. The menu should
have the following options:

a) Push on to the stack
b) Pop from the stack and print the value popped from the stack
c) Merely print the value on top of the stack
d) Exit

Error trapping should be done for underflow and overflow. Available array space
should be efficiently used (i.e. there cannot be overflow if there is more than 1 empty
element in the array). Assume that the information part of a stack element is only an
integer.

15. Write a program to convert an expression from its infix form to its equivalent
a) postfix form
b) prefix form.

Display the results accordingly.
Assume the infix expression contains only operators +, -, /, *, ^. The operator ‘^’
stands for exponentiation. The operands are all single digit integers.

16. Write a program to input a postfix expression that consists of only single digit positive
operands and the binary operators +, -, *, and /. Using a function, evaluate this postfix
expression. The function should report if the postfix expression is invalid, else return
its value. [For example, 242/-46*+7+ is a valid postfix expression (being the
equivalent of the infix expression, 2-4/2+4*6+7) and its value is 31.00.]

17. Write a program to implement insertion and deletion in a queue
18. Write a program to create a binary tree and to traverse the tree in

a) pre-order
b) in-order
c) post-order

19. Write a program to construct a binary search tree of integers using a linked list.
Assume the information part of each node consists of only an integer key. Get input
for each key from the keyboard. Assume the input is over when the user enters –1.
Next, print out the keys in ascending order of magnitude.

20. Write a program to create a binary search tree and perform the following operations:
a) Search for a given node.

22

b) Delete a given node. Display a proper message if a given node is not present in
the tree.

21. Write a program to find the biggest and smallest item in a binary search tree.
22. Write a program to create and print a graph using an adjacency matrix.
23. Write a program to create a graph of n vertices using an adjacency list and print the

value of all the nodes.
24. Write a program to implement the Depth First Search algorithm to traverse a graph.
25. Write a program to implement the Breadth First Search algorithm to traverse a graph.

Instructions to Paper Setter (Theory Examination):
● Questions should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED Marks

I 2 1 18

II 2 1 19

III 2 1 19

Instructions to Paper Setter (Practical Examination):
● Two sets of question papers should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED Marks

I 2 1 6

II 2 1 6

III 2 1 7

Exam Duration:

THEORY PRACTICAL

2 hours1
2

3 hours

Distribution of marks for practical:
10% : Syntax and input/output screens
30% : Logic and efficiency (source code, pseudocode and algorithm)
20% : Error Trapping
20% : Completion
20% : Result

23

Recommended Readings:

Text Books:
1. R. Thareja, “Data Structure Using C”, 3rd Edition, Oxford University India Press,

2023
2. S. Lipschutz, “Data Structures with C”, 1st Edition, McGraw Hill Education India,

2017

Reference Books:

1. Y. P. Kanetkar, “Data Structures Through C Language”, 5th Edition, BPB
Publications, 2023.

2. Y. Langsam, M. J. Augenstein and A. M. Tenenbaum, “Data Structures Using C and
C++”, 2nd Edition, Prentice Hall of India, 2015.

3. E. Horowitz, S. Sahni and D. Mehta, “Fundamentals of Data Structures in C”,
Universities Press (India) Pvt Ltd, 2009.

24

Computer System Architecture
(MAJOR - T)
BCA – 251

Paper Title: Computer System Architecture
Paper Code: BCA-251
Number of Hours Per Week: (L+T+P= 4+0+0)
Total Contact Hours: 60
Number of Credits: 4

Course Objectives (COs):
● CO1: Understand the functional units of a computer, including bus structures,

memory operations, and instruction execution in assembly language.
● CO2: Explore control memory design, address sequencing, and I/O operations such

as programmed I/O, interrupt-initiated I/O, and DMA.
● CO3: Learn about pipelining, vector processing, and the concept of parallel

processing in different computer models.
● CO4: Analyse memory hierarchy, including auxiliary memory, cache memory, virtual

memory, and memory management techniques.
● CO5: Develop skills in designing and optimising computer systems for efficient data

processing, memory utilisation, and I/O operations.

Learning Outcomes (LOs):
On successful completion of the course, students will be able to:

● LO1: Explain the basics of organisational and architectural issues of a digital
computer and Classify and compute the performance of machines, Machine
Instructions.

● LO2: Describe various data transfer techniques in digital computers and the I/O
interfaces.

● LO3: Analyse the performance of various classes of Memories, build large memories
using small memories for better performance and analyse arithmetic for ALU
implementation.

● LO4: Describe the basics of hardwired and micro-programmed control of the CPU,
and pipelined architectures.

Outline of the Course :
UNIT TOPIC Hours External

Marks
Internal
Marks

I Basic Concept and Assembly Language 15 18

25
II Control Unit and Input/Output Organisation. 15 19

III Pipeline and Vector Processing 15 19

IV Memory Hierarchy 15 19

Total 60 75 25

25

CONTENTS
UNIT I 15 Hours
Basic Concept and Assembly language : Functional units of a computer, Basic operational
concepts, Bus structures, memory locations, Address and Encoding of Information, main
memory operations, Instructions and Instruction sequencing: Instruction Execution and
straight line sequencing, Branching, Addressing modes, Assembly Language: Assembler,
Assembler commands, Assembly and execution of programs.

UNIT II 15 Hours
Control memory, Address sequencing: Routine, mapping, conditioned Branching, mapping
instruction, Design of control unit: Microprogram sequencer. Input Output: Accessing I/O
devices, Data transfer between the CPU and I/O devices: Programmed I/O, Interrupt initiated
I/O and Direct Memory Access (DMA). Memory mapped I/O vs. Isolated I/O.

UNIT III 15 Hours
Pipelining and vector processing: Four models of Computers (SISD, SIMD, MISD,
MIMD), Parallel processing, pipeline. Arithmetic pipeline, Instruction pipeline, RISC
pipeline, Vector processing; vector operations, Memory Interleaving, concept of
Supercomputers.

UNIT IV 15 Hours
Memory Hierarchy: auxiliary memory, cache memory, multiprogramming; main memory,
RAM, ROM, Bootstrap loader, computer start up. RAM and ROM chips, memory Address
map, memory connection to CPU; auxiliary memory; magnetic disk, magnetic tape;
Associative memory; cache memory; Locality of reference, hit ratio, mapping, Associative
mapping, Direct mapping, writing into cache; virtual memory; Address space and memory
space, Address mapping using papers, Associative memory page table; memory management
hardware, memory protection

Instructions to Paper Setter (Theory Examination):
● Questions should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED Marks

I 2 1 18

II 2 1 19

III 2 1 19

IV 2 1 19

26

Exam Duration:

THEORY

3 hours

Recommended Reading:

Text Books:
1. M. M. Mano, “Computer System Architecture”, 3rd Edition, Pearson, 2017.
2. C. Hamacher, Z. Vranesic and S. Zaky, “Computer Architecture And Organization”,

5th Edition, McGraw Hill, New Delhi, India, 2002.

Reference Books:
1. H. Stone, “Introduction to Computer architecture”, 3rd Edition, Galgotia Publishing

Ltd., 2001
2. P. P. Chaudhuri, “Computer Organization and Design”, 4th Edition, Prentice Hall

India, 2002.
3. T. C. Bartee, “Computer Architecture and Logic Design”, Tata McGraw-Hill,

International Edition, 2001.
4. B. Ram, “Computer Fundamentals, Architecture and Organization”, 3rd Edition, New

Age International Publishers, 2002.

27

Database Management Systems
(MAJOT - T + P)

BCA-252

Paper Title : Database Management Systems
Paper Code : BCA-252
Number of Hours Per Week : (L+T+P = 3+0+2)
Number of contact hours : 75
Number of Credits : 4 (Th: 3 + Pr: 1)

Course Objectives (COs):
● CO1: Understand the fundamental concepts of Database Management Systems

(DBMS) and database design principles using Entity-Relationship (ER) diagrams
● CO2: Explore file organisation techniques, Relational Model, relational algebra

operations and normalisation techniques up to BCNF.
● CO3: Acquire knowledge of transaction processing concepts, concurrency control

techniques, schedules, recoverability, and deadlock prevention mechanisms in
database systems.

Learning Outcomes (LOs):

On successful completion of the course, students will be able to:
● LO1: Understand the fundamental concepts of relational database management

systems (RDBMS) and their applications.
● LO2: Demonstrate proficiency in designing entity-relationship (ER) models to

represent real-world scenarios.
● LO3: Utilise SQL to manipulate and query relational databases effectively.
● LO4: Identify functional dependencies and apply normalisation techniques to achieve

higher database integrity.
● LO4: Develop practical skills through hands-on exercises and projects using a

popular RDBMS software.

Outlines of the Course:

UNIT TOPIC Hours External
Marks

Internal
Marks

I Introduction to DBMS Concepts, Database Design
and File Organization 15 18

19II Relational Algebra Concepts, Functional
Dependency and Normal Forms 15 19

III Transaction Processing Concepts, Schedules and
Recoverability, Concurrency Control Techniques 15 19

IV Practical 30 19 6
TOTAL 75 75 25

28

CONTENTS

UNIT I 15 hours
Introduction to DBMS Concepts: File Systems versus DBMS, the Data Model, Levels of
Abstraction, Data Independence, Structure of a DBMS. Introduction to Database Design:
Database Design and E-R Diagrams, Entities, Attributes, Entity Types, Value sets, Key
attributes, Relationships, Relationship Sets, Additional Features of the ER Model, Conceptual
Design with ER Model. File Organization and Indexing: Types of single-level Ordered
Indexes: Primary Indexes, Clustering Indexes; Multilevel Indexes, search trees and B-trees.

UNIT II 15 hours
Relational Model Concepts: Domains, Tuples, Attributes, and Relations, Characteristics of
Relations, Relational Model Notation; Relational Model constraints, update operations on
relations; Insert, Delete, Modify operations; Defining Relations, Relational Algebra:
SELECT, PROJECT, UNION, INTERSECTION, DIFFERENCE, JOIN, DIVISION
operations. Functional dependency and Normal forms: Definition of Functional
dependency, Interference Rules for Functional Dependencies, equivalence of sets of
Functional Dependencies, Minimal sets of Functional Dependencies, Introduction to
Normalisation, Definitions of INF, 2NF, 3NF, BCNF.

UNIT III 15 hours
Transaction Processing Concepts: Introduction to Transaction Processing, Read & Write
Operations, Need for Concurrency Control, Transaction States, Commit Point of a
Transaction, Desirable Transaction Properties. Schedules and Recoverability: Schedules,
Characterising Schedules, Serializability of Schedules, Testing for Conflict Serializability of
a Schedule, Uses of Serializability, Concurrency Control Techniques: The Locking
Protocol, Locks. Two Phase Locking (2PL), Deadlock and its Prevention

UNIT IV 30 hours

Suggested Experiments:

1. A Case Study with Report to be presented by individual student covering the
following concepts

a. ER Diagram
b. Relational Model
c. Normalisation

2. Practical Assignments: Use any appropriate RDBMS to be made available –
preferably MySQL)

a. Exercises using DDL Commands
b. Exercises using DML Commands
c. Querying using ANY, ALL, IN, Exists, Not Exists, Union, Intersection

Constraints etc.
d. Querying using Aggregate functions, group by, having and Creation and

dropping of views.

29

e. Triggers (Creation of insert trigger, delete trigger, update trigger)
f. Procedures

Distribution of marks for practical:

10% : Syntax and input/output screens
30% : Logic and efficiency (source code, pseudocode and algorithm)
20% : Error Trapping
20% : Completion
20% : Result

Instructions to Paper Setter (Theory Examination):
● Questions should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED Marks

I 2 1 18

II 2 1 19

III 2 1 19

Instructions to Paper Setter (Practical Examination):
● Two sets of question papers should be set according to the following scheme

Topic QUESTIONS

TO BE SET TO BE ANSWERED Marks

Topic: Creating databases, tables
and insertion of data

1 1 6

Topic: SQL queries and views
related to Q1.

2 1 6

Topic: Triggers and Procedures
related to Q1.

2 1 7

Exam Duration:

THEORY PRACTICAL

2 hours1
2

3 hours

30

Recommended Reading:

Text Books:

1. R. Elmasri and B. Navathe, “Fundamentals of Database System”, 7th Edition,
Addition-Wesley, 2017

2. A. Silberschatz and H. F. Korth, “Database System Concepts”, 5th edition, McGraw
Hill, 2021

References Books:

1. R. Ramkrishnan and J. Gehrke, “Database Management Systems”, 3rd Edition, Tata
Mc Graw Hill, 2002.

2. C.J. Date, A. Kannan and S. Swamynathan, “Introduction to Database Systems”, 8th
Edition, Pearson Education, 2006.

3. M. Gillenson, “Fundamentals of Database Management Systems”, 2nd Edition, Wiley
Student Edition, 2012

31

Operating Systems and Shell Programming
(MAJOR - T + P)

BCA - 253
Paper Title: Operating Systems and Shell Programming.
Paper Code: BCA - 253
Number of Hours per Week: (L+T+P = 3+0+2)
Total Contact Hours: 75
Number of Credits: 4 (Th: 3 + Pr: 1)

Course Objectives (COs):
● CO1: Develop an understanding of operating systems, covering various system types,

structures, process management, synchronisation, CPU scheduling, deadlock
resolution, threads, memory management, paging, demand paging, and file systems.

● CO2: Understand the concepts such as processes, inter-process communication,
synchronisation techniques, CPU scheduling algorithms, deadlock handling strategies,
memory management techniques including paging and demand paging, and file
system operations.

● CO3: Learning basic linux commands and shell programming.

Learning Outcomes (LOs):
On successful completion of the course, students will be able to

● LO1: Understand the importance of computer system resources and the role of
operating systems in their management policies and algorithms.

● LO2: Understand various process management concepts including scheduling,
synchronisation, and deadlocks.

● LO3: Understand memory management concepts.
● LO4: Understand the file systems, access methods, directory structures, and file

system implementation techniques, which are essential for organising and managing
data on storage devices.

● LO5: Develop shell scripting skills through hands-on exercise using vim editor that
enhances problem-solving abilities.

Outline of the Course:

32

UNIT TOPIC Hours External
Marks

Internal
Marks

I Overview of Operating Systems 15 18

19
II Process Management, Process Synchronisation,

CPU Scheduling, Deadlocks, Threads
15 19

III Memory Management, File System, 15 19

IV Practical 30 19 6

Total 75 75 25

CONTENTS
UNIT I 15 hours
Overview of Operating Systems: Simple Batch Systems, Time Sharing Systems, Personal
Computer Systems, Parallel Systems, Distributed Systems, Real Time Systems. Operating
System Structures: System Components and services, system calls, system programs, virtual
Machines.

UNIT II 15 hours
Process Management: Process Concept, Operation on Processes, Cooperating Processes,
Inter-process Communication. Process Synchronisation: The critical section problem, two
process solution and multiple process solution. Synchronisation hardware, mutex locks,
Semaphores—implementation, some critical problems of synchronisation. Readers and
Writers problem, Dining-Philosophers’ problem. CPU Scheduling: Basic Concepts,
scheduling criteria, scheduling algorithms, FCFS, SJF, RR, Priority Scheduling. Deadlocks:
Deadlock Characterization, Methods for Handling Deadlocks, Deadlock Prevention,
Deadlock Avoidance, Deadlock Detection, Recovery from Deadlock. Threads: Overview
and benefits.

UNIT III 15 hours
Memory Management: Logical and physical address space, Swapping, Contiguous
allocation – memory protection, memory allocation, fragmentation. Paging: Basic method,
hardware support, protection. Demand Paging: Basic concepts, basic scheme of page
replacement, page replacement algorithms. File System: File Concept (File Attributes, File
Operations, File Types), Directory and Disk Structure (Basic Concepts), File-System
Mounting, File Protection (Types of Access, Access Control).

UNIT IV 30 hours
Basic shell Commands in Linux:

● Elementary Linux Utilities: cal, date, who, uname, passwd, echo, tput, bc.
● Elementary Linux commands; cd, mkdir, pwd, rmdir, chmod, chown, ls, cat, cp, rm,

more, wc, split, cmp.
● Simple Filters: pr, head, tail, cut, paste, sort, uniq, tr.

Shell Scripting: Assignments covering the following concepts to be completed
● Introduction to shell script: Shell variables, data types
● String and array manipulation, Control structures, Functions, Command -Line

Arguments and Options, Input and Output Redirection, Pipes, Tees, Command
Substitution.

● Introduction to regular expressions
● Pattern matching and substitution: use of the following tools: sed. awk, grep
● Error handling and debugging techniques

Instructions to Paper Setter (Theory Examination):
● Questions should be set according to the following scheme

33

UNIT QUESTIONS

TO BE SET TO BE ANSWERED Marks

I 2 1 18

II 2 1 19

III 2 1 19

Instructions to Paper Setter (Practical Examination):
● Two sets of questions to be set from Shell Scripting according to the following

scheme

Shell Scripting Questions from
UNIT-IV

QUESTIONS

TO BE SET TO BE ANSWERED Marks

Q1 2 1 6

Q2 2 1 6

Q3 2 1 7

Exam Duration:

THEORY PRACTICAL

2 hours1
2

3 hours

Distribution of marks for practical:
10% : Syntax and input/output screens
30% : Logic and efficiency (source code, pseudocode and algorithm)
20% : Error Trapping
20% : Completion
20% : Result

Recommended Reading:

Text Books:
1. A. Silberschatz, P. B. Galvin and G. Gagne, “Operating System Concepts”, 9th

Edition, Addison-Wesley, 2018.
2. S. Das, “Unix: Concepts and Applications”, 4th Edition, Tata McGraw Hill, 2006

34

Reference Books:
1. A. Tanenbaum, “Modern Operating Systems”, 4th Edition, Pearson Education Inc.,

2009.
2. W. Stallings, “Operating Systems”, 7th Edition, Prentice Hall India Pvt Ltd, 2012

35

Semester V
Software Engineering

(MAJOR - T)
BCA-300

Paper Title: Software Engineering
Paper Code: BCA-300
Number of Hours Per Week: (L+T+P= 4+0+0)
Total Contact Hours: 60
Number of Credits: 4

Course Objectives (COs):
● CO1: Understand system concepts, types, and the role of a systems analyst, including

data gathering techniques and software life cycle models.
● CO2: Gain knowledge of software project management principles, including project

planning, estimation techniques, risk management, configuration management, and
project scheduling.

● CO3: Learn about requirement analysis and specification, function-oriented and
object-oriented software design methodologies, user interface design principles, and
GUI development.

● CO4: Develop skills in coding, testing, software documentation, software reliability,
and software maintenance, including testing techniques, debugging, integration
testing, and software quality management.

Learning Outcomes (LOs):
On successful completion of the course, students will be able to:

● LO1: Understand the principles and practices of software engineering.
● LO2: Apply software engineering processes and methodologies to develop software

systems.
● LO3: Perform requirements analysis and software design.
● LO4: Implement software using appropriate programming languages and

development tools.
● LO5: Apply software testing and quality assurance techniques.

Outline of the Paper:

UNIT Topic Hours External
Marks

Internal
Marks

I Introduction, System Analysis and Design 15 18

25
II Project Management 15 19

III Function and Interface Design 15 19

IV Coding,Testing and Maintenance 15 19

Total 60 75 25

36

CONTENTS

UNIT I 15 hours

Introduction: System definition and concepts: Characteristics and types of system, Manual
and automated, MIS, DSS, Real Time and Distributed. Systems analyst: Roles and
Responsibilities of Systems Analyst , Data and fact gathering techniques used by Systems
Analyst. Software Life cycle models: Roles and Responsibilities of Systems Analyst, Data
and fact gathering techniques used by Systems Analyst. Software Life cycle models:
Importance of a life cycle model, waterfall model (feasibility study, requirement , analysis
and specification, design, coding and unit testing, integration and system testing,
maintenance), prototyping model, evolutionary model, spiral model, Comparison of different
life cycle models.

UNIT II 15 hours

Software Project Management: Responsibilities of a Software Project Manager, Project
Planning, Project Estimation Techniques Size Estimation like lines of Code & Function
Count, Cost Estimation Models, COCOMO, Risk Management, Software Configuration
Management. Project Scheduling: Work breakdown, Activity Networks and Critical Path
Method, Gantt Charts, PERT Charts, Project Monitoring and Control. Requirement Analysis
and specification: Software Requirements Specification (Content of the SRS document,
characteristics of a good SRS document, techniques for representing complex logic –
Decision Tree and Decision Table).

UNIT III 15 hours

Function Oriented Software Design: Overview of SA/SD methodology, Structured
Analysis, data Flow Diagrams (DFDs)(primitive symbols used for constructing DFDs,
important concepts associated with designing DFDs, developing the DFD Model of a system,
Shortcomings of the DFD Model). Object Oriented Design. User Interface Design:
characteristics of a good user interface, basic concepts (user guidance and online help,
mode-based vs. Modeless Interface, Graphical User Interface (GUI) vs. Text-based User
Interface), Types of user interfaces (command language-based Interface, Menu-based
Interface, direct manipulation Interface), Component-Based GUI Development (Window
system, Types of widgets, Visual programming), User interface methodology (Design, a GUI
design methodology).

UNIT IV 15 hours

Coding and Testing: coding standards and guidelines, code review (code walkthroughs, code
inspection), Software Documentation(Internal and External), Testing (testing, verification vs.
validation, design of test cases), Testing in the large, Testing in the small, unit testing,
Black-box testing, White-box testing (Statement, Branch and Condition coverage),
debugging, integration testing, system testing. Software Reliability: Software reliability,
software quality, and software quality management. Software Maintenance: Characteristics
of software maintenance (types of software maintenance, special problems associated with
software maintenance), software reverse engineering.

37

Instructions to Paper Setter (Theory Examination):
● Questions should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED Marks

I 2 1 18

II 2 1 19

III 2 1 19

IV 2 1 19

Exam Duration:

THEORY

3 hours

Recommended Reading:

Text Books:

1. R. Pressman, “Software Engineering: A Practitioner's Approach”, 9th Edition,
McGraw Hill, 2023

2. R. Mall, “Fundamentals of Software Engineering”, 5th Edition, Pearson Education /
Prentice Hall of India, New Delhi, 2018.

References Books:

1. E. M. Awad, “System Analysis and Design”, 2nd Edition, Galgotia Publications (P)
Ltd, New Delhi, 2008.

2. C. Ghezzi, M. Jazayeri and D. Mandrioli, “Fundamentals of Software Engineering”,
2nd Edition, Prentice Hall of India Private Limited, New Delhi, 2002.

3. R. E. Fairley, “Software Engineering Concepts”, Tata McGraw Hill Publishing
Company Limited, New Delhi, 1997.

38

Mathematics I
(MAJOR - T+P)

BCA-301
Paper Title: Mathematics I
Paper Code: BCA-301
Number of Hours Per Week: (L+T+P= 3+0+2)
Total Contact Hours: 75
Number of Credits: 4 (Th: 3 + Pr: 1)

Course Objectives (COs):
● CO1: Develop a foundational understanding of fundamental mathematical concepts

including set theory, mathematical logic, counting principles, statistics, and
probability.

● CO2: Apply mathematical reasoning and problem-solving skills to analyse and solve
problems across various domains, particularly in business, industry, and scientific
research.

● CO3: Equip students with the necessary tools and techniques to interpret and
communicate mathematical information effectively, both orally and in written form,
and to make informed decisions based on statistical and probabilistic analyses.

Learning Outcomes (LOs):
On successful completion of the course, students will be able to:

● LO1: Understand fundamental concepts of set theory, relations, and functions,
including operations, properties, and applications.

● LO2: Apply principles of mathematical logic to analyse propositions, construct
logical arguments, and perform proofs.

● LO3: Utilise counting principles and techniques to solve problems involving
permutations, combinations, and the Pigeonhole Principle.

● LO4: Analyse statistical data using graphical representations, compute measures of
central tendency and dispersion, and interpret their significance in practical contexts.

● LO5: Apply probability concepts to compute probabilities, joint distributions, and
moments, and understand the applications of special probability distributions in
various scenarios.

Outline of the Course:

UNIT TOPIC Hours External
Marks

Internal
Marks

I Set Theory, Functions and Graphs 15 18

19II Mathematical Logic 15 19

III Statistics and Probability 15 19

IV Practical 30 19 6

Total 75 75 25

39

CONTENTS
UNIT-I 15 Hours
Set Theory: Basics in set theory such as ways of describing a set, set operations, empty set,
disjoint sets, De Morgan's laws,Venn diagrams; power sets, Cartesian products, cardinality
results; relation as a subset of Cartesian product (notation: xRy if (x,y) Є R); relation on a set:
reflexive, symmetric, anti-symmetric, transitive with examples. Equivalence relation.
Functions and Graphs: Real valued functions such as polynomials, rational functions,
logarithmic functions,exponential functions, limits, standard theorems on limits, standard
limits. Continuity and its properties, differentiability. Statements with applications only of the
following: Boundedness, Intermediate value theorem.

UNIT-II 15 Hours
Mathematical Logic: Connectives, well formed formulas, truth tables, tautology,
equivalence, implication, normal forms, predicates, free & bound variables, rules of
inference, consistency, Proof by contradiction. Counting and Relations: Basics of
counting, Pigeonhole Principle, Permutation and Combinations, Binomial coefficients

UNIT-III 15 Hours
Statistics: Definition of Statistics, Nature and scope of statistics, uses of statistics in business
and industrial activities, Statistical Data, collection of statistical data, representation of
statistical data-bar charts, pie diagram, line graphTabulation of data frequency distribution
table. Graphical representation of frequency distribution-histogram, frequency polygon,
cumulative frequency distribution and the ogive. Measures of central tendency-mean,
median, mode and their applications in business. Measures of dispersion-range, quartile
deviation, mean deviation, standard deviation, coefficient of variation, uses of dispersion.
Probability: Probability elementary concepts of probability, probability density
functions,distribution function,joint distribution,moment generating and characteristic
functions, Mathematical expectation,special probability distribution, Normal, Exponential,
Hypergeometric distributions.

UNIT-IV 30 Hours

(Any appropriate statistical software package such as R may be used)

Suggested Experiments:

Data Collection and Representation:
1. Utilise statistical software to analyse and visualise datasets related to business or

industrial activities.
1. Generate bar charts, pie diagrams, and line graphs to represent the collected data

effectively.
2. Compare and contrast different graphical representations produced by the software to

determine the most suitable for conveying specific types of information.

Frequency Distribution and Graphical Representation:
3. Use statistical software to create frequency distribution tables from given datasets.
4. Generate histograms, frequency polygons, and cumulative frequency distributions

based on the frequency distribution tables.

40

5. Interpret the graphical representations generated by the software to identify patterns
and trends in the data.

Measures of Central Tendency and Dispersion:
6. Utilise statistical software to calculate the mean, median, and mode for various

datasets representing business or industrial scenarios.
7. Discuss the practical applications of each measure of central tendency in analysing

sales data or employee performance, supported by software-generated results.
8. Compute measures of dispersion such as range, quartile deviation, mean deviation,

standard deviation, and coefficient of variation using statistical software and interpret
their implications for variability and spread within the data.

Probability Concepts and Distributions:
9. Explore elementary probability concepts using statistical software through simulated

experiments or random sampling.
10. Calculate probabilities for various events using built-in probability density functions

and distribution functions.
11. Utilise statistical software to compute joint distributions and moments for pairs of

random variables in relevant business or industrial contexts.
12. Apply the concepts of mathematical expectation using statistical software to calculate

expected values in scenarios such as project management or inventory control.
13. Analyse the characteristics and applications of special probability distributions like

the Normal, Exponential, and Hypergeometric distributions using statistical software,
focusing on real-world scenarios such as modelling product lifetimes or analysing
defect rates in manufacturing processes.

14. Generate and plot probability density functions (PDFs) for continuous random
variables such as uniform, normal, and exponential distributions.

15. Generate random samples from special distributions such as the normal, exponential,
and hypergeometric distributions using software tools.

16. Analyse the properties of MGFs and their relationship with moments of random
variables.

Integration of Statistics and Probability:
17. Employ statistical software to design and conduct experiments, and gather data

relevant to business or industrial activities.
18. Apply statistical analysis techniques, including measures of central tendency,

dispersion, and probability distributions within the software environment, to draw
conclusions and make predictions based on the collected data.

41

Instructions to Paper Setter (Theory Examination):
● Questions should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED MARKS

I 2 1 18

II 2 1 19

III 2 1 19

Instructions to Paper Setter (Practical Examination):
● Two sets of question papers should be set according to the following scheme

Questions to be prepared from a
list of practical given in
UNIT-IV

QUESTIONS

TO BE SET TO BE ANSWERED MARKS

Q1. Topic: Data Collection and
Representation, Frequency
Distribution and Graphical
Representation

2 1 6

Q2. Measures of Central Tendency
and Dispersion

2 1 6

Q3. Probability Concepts and
Distributions, Integration of
Statistics and Probability

2 1 7

Exam Duration:

THEORY PRACTICAL

2 hours1
2

3 hours

Distribution of marks for practical
10% : Syntax and input/output screens
30% : Logic and efficiency (source code, pseudocode, and algorithm)
20% : Error trapping (illegal or invalid input, stack overflow, underflow, insufficient

physical memory etc
20% : Completion
20% : Result

42

Recommended Reading:

Text Books:
1. J. P. Trembly and R.P. Manohar, “Discrete Mathematical Structures with Applications

to Computer Science”, International Edition, McGraw-Hill, 2001.
2. E. Kreyszig, “Advanced Engineering Mathematics”, 6th Edition, Wiley International,

2002.
3. M. K. Bhowal and P Barua, “A First Course in Statistics Volume 1”, 2nd Edition,

2019.

Reference Books:
1. B. K. Pal and K. Das, “BCA Mathematics Vol. IV”, 1st Edition, U.N. Dhur & Sons

Private Ltd., 2011.

43

Advanced Python Programming
(MAJOR / MINOR - T + P)

BCA-302

Paper Title: Advanced Python Programming
Paper Code: BCA-302
Number of Hours Per Week: (L+T+P= 3+0+2)
Total Contact Hours: 75
Number of Credits: 4 (Th: 3+ Pr: 1)

Course Objectives (COs):
● CO1: This course is designed to introduce programming concepts using Python. The

course focuses on the development of Python programming to solve problems of
different domains.

● CO2: Gain robust understanding of the concept of object-oriented concepts as applied
in python programming

● CO3: Develop proficiency in using python libraries such as Numpy, Pandas and
Matplotlib

Learning Outcomes (LOs):
On successful completion of the course, students will be able to:

● LO1: Explain the basic concepts of Python Programming.
● LO2: Demonstrate proficiency in the handling of loops and creation of functions.
● LO3: Identify the methods to create and manipulate lists, tuples and dictionaries.
● LO4: Apply Numpy, Pandas and Matplotlib
● LO5: Interpret the concepts of Object-Oriented Programming as used in Python.

Outline of the Course:

UNIT TOPIC Hours External
Marks

Internal
Marks

I Basics of Python, Control Flow, Loops Strings
and Functions 15 18

19II List, Dictionaries, Tuples, Sets, Numpy, Pandas
and Matplotlib 15 19

III OOP Concepts and Exception 15 19

IV Practical 30 19 6

Total 75 75 25

CONTENTS
UNIT I 15 hours
Python Basics: Identifiers, Keywords, Statements and Expressions, Variables, Operators,
Precedence and Association, Data Types, Indentation, Comments, Built-in Functions-
Console Input and Console Output, Type Conversions, Python Libraries, Importing Libraries

44

with Examples. Python Control Flow: Types of Control Flow; Control Flow Statements- if,
else, elif, while loop, break, continue statements, for loop Statement; Strings: Creating and
Storing Strings; Accessing String Characters; the str() function; Operations on Strings-
Concatenation, Comparison, Slicing and Joining, Traversing, Format Specifiers, Escape
Sequences, Python String Methods. Python Functions: Types of Functions; Function
Definition- Syntax, Function Calling, Passing Parameters/arguments, the return statement;
Default Parameters; Recursive Functions

UNIT II 15 hours
Lists: Creating Lists; Nested Lists, Operations on Lists, Basic Built-in Functions on Lists.
Dictionaries: Creating Dictionaries; Operations on Dictionaries; Basic Built-in Functions on
Dictionaries, Populating and Traversing Dictionaries. Tuples and Sets: Creating Tuples;
Operations on Tuples; Built-in Functions on Tuples; Tuple Methods; Creating Sets;
Operations on Sets; Basic Built-in Functions on Sets. NumPy: Introduction to NumPy, Array
Creation using NumPy, Operations on Arrays. Pandas: Introduction to Pandas, Series and
DataFrames, Creating DataFrames from Excel Sheet and .csv file, Dictionary and Tuples.
Basic Operations on DataFrames. Data Visualisation: Introduction to Data Visualisation,
Matplotlib Library; Different Types of Charts using Pyplot- Line chart, Bar chart and
Histogram and Pie chart

UNIT III 15 hours
OOP Concepts: Overview of OOP concepts, Defining Classes, Creating Objects,
Constructor (_init_), class methods, class variables and object variables, Access modifiers –
public, private, and protected, getter and setter methods, Static methods, Inheritance, types of
inheritance- single inheritance, multiple inheritance, multi-level inheritance, multipath
inheritance, polymorphism and method overloading, super keyword. Exceptions: Exceptions,
Handling exceptions, multiple except blocks, raising exceptions, built-in exceptions and
user-defined exceptions

UNIT IV 30 hours
Practical from UNIT I, UNIT II and UNIT III.
Suggested Basic Experiments:

1. Create a program that takes user input for the radius of a circle and calculates its area
using variables and basic arithmetic operators.

2. Create a program to display the first n Fibonacci number.
3. Write a program to check if a number is an Armstrong number.
4. Write a program that checks whether a given number is positive, negative, or zero

using if-else statements.
5. Write a Python program that takes a student's score as input and prints their

corresponding grade based on the following criteria:
A: 90-100
B: 80-89
C: 70-79
D: 60-69
F: Below 60

6. Develop a program that takes a user-entered sentence and performs operations like
string concatenation, slicing, and checks for the presence of a specific word.

7. Create a function to calculate the factorial of a given number using a recursive
function.

45

8. Design a program that accepts user input as a string and converts it into different data
types (int, float) using type conversion functions.

9. Implement a program that checks if a number is prime using a while loop for repeated
checks and breaks out of the loop when a prime number is found.

10. Write a program to print a pyramid design with *.
11. Write a program to check if a word is a palindrome.
12. Write a program that takes a user's full name as input, capitalises the first letter of

each word using string methods, and displays the formatted name.
13. Write a program to count the frequency of each word in a sentence and remove

duplicate words
14. Write programs to illustrate the use of function calls with arguments and functions

returning values.
15. Write a program to take input for a sentence and sort the words according to their

length.

Suggested Advanced Experiments:
1. Write a program to perform matrix addition and multiplication using nested lists.
2. Implement a simple shopping cart system using lists to add, remove, and display

items.
3. Create a program that takes multiple lists as input and calculates the length of each list

using a function.
4. Write a program to build a contact book program using dictionaries to store and

manage contact details. Allow users to update phone numbers in the contact book
program.

5. Write a function to print all keys and values from a dictionary in separate lists.
6. Write a program that takes user input for a day and checks if it's a weekday using a

tuple.
7. Implement a program that performs set operations (union, intersection, difference) on

two sets.
8. Use NumPy to calculate the mean, median, and standard deviation of a dataset.
9. Write a program that reshapes a 1D NumPy array into a 2D array.
10. Load a dataset into a Pandas DataFrame and explore basic statistics and information

about the data. Add a new column to a DataFrame based on a calculation using
existing columns.

11. Use Matplotlib to plot the trend of a dataset over time (line chart), create a bar chart
comparing the sales of different products, plot a histogram to analyse the distribution
of ages in a dataset and display the percentage distribution of different categories
using a pie chart.

12. Define a Python class named Car with attributes such as make, model, and year.
Include a method within the class to display the car's information. Create an object of
the Car class and invoke the method to print the details.

13. Create a base class called Animal with a method make_sound. Create two derived
classes, Dog and Cat, that inherit from the Animal class. Override the make_sound
method in both derived classes to represent the sounds a dog and a cat make.
Instantiate objects of both derived classes and invoke the make_sound method.

14. Define a class called Person with private attributes (_name and _age). Implement a
property setter for the _age attribute to ensure that the age is a positive integer. Create
an object of the Person class, set the name and age using the property setter, and then
print the person's details.

15. Write a program that takes two numbers as input from the user and performs division.

46

Handle the following exceptions: ZeroDivisionError: If the user attempts to divide by
zero, print an error message indicating that division by zero is not allowed.
ValueError: If the user enters a non-numeric value, print an error message indicating
that only numeric values are allowed. Exception: If any other unexpected exception
occurs, print a general error message.

Instructions to Paper Setter (Theory Examination):
● Questions should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED Marks

I 2 1 18

II 2 1 19

III 2 1 19

Instructions to Paper Setter (Practical Examination):
● Two sets of question papers should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED Marks

I 2 1 6

II 2 1 6

III 2 1 7

Exam Duration:

THEORY PRACTICAL

2 hours1
2

3 hours

Distribution of marks for practical
10% : Syntax and input/output screens
30% : Logic and efficiency (source code, pseudocode, and algorithm)
20% : Error trapping (illegal or invalid input, stack overflow, underflow, insufficient

physical memory etc
20% : Completion
20% : Result

47

Recommended Reading:

Text Books:
1. R. Thareja, “Python Programming: Using Problem-Solving Approach”, 2nd Edition,

Oxford University Press India, 2023
2. S. Gowrishankar and A. Veena, “Introduction to Python Programming”, CRC Press,

2019.
3. F. Nelli, “Python Data Analytics: Data Analysis and Science Using Pandas,

matplotlib, and the Python Programming Language”, 1st Edition, Apress, 2015

Reference Books:
1. T. A. Budd, “Exploring Python”, 1st Edition, McGraw Hill, 2011
2. M. Lutz, “Learning Python: Powerful Object-Oriented Programming”, 5th Edition,

Shroff/O’Reilly, 2013

48

Semester VI

Mathematics II
(MAJOR - T)
BCA-350

Paper Title : Mathematics II
Paper Code: BCA-350
Number of Hours Per Week: (L+T+P= 4+0+0)
Total Contact Hours: 60
Number of Credits: 4

Course Objectives (COs):
● CO1: Learn to manipulate vectors in 2D and 3D spaces, including addition, scalar

multiplication, dot product, and cross product, and apply them to solve problems in
geometry and trigonometry.

● CO2: Understand the properties and operations of matrices, including addition,
multiplication, transpose, and special types of matrices. Learn to calculate
determinants, inverses, rank, and eigenvalues of matrices.

● CO3: Study differential calculus to find derivatives of functions and solve problems
related to maxima, minima, tangents, and normals. Learn integral calculus to find
antiderivatives, properties of definite integrals, and improper integrals.

Learning Outcomes (LOs):
● LO1: On successful completion of the course, students will be able to:
● LO2: Master operations and applications of vectors in various coordinate systems for

geometry and physics.
● LO3: Understand matrix operations, determinants, and inverses for solving linear

equations and transformations.
● LO4: Apply differential calculus for derivatives and optimization, and understand

basic integral calculus for problem-solving.
● LO5: Develop strong problem-solving abilities and critical thinking skills through

practical applications.
● LO6: Use mathematical models to analyse real-world problems, preparing for

complex engineering and scientific challenges.

Outlines of the Course:

UNIT Topic Hours External
Marks

Internal
Marks

I Vectors, Coordinate Geometry 15 19

25
II Matrices 15 18

III Differential Calculus 15 19

IV Integral Calculus 15 19

Total 60 75 25

49

CONTENTS
UNIT I 15 hours
Vectors: Space Coordinate: rectangular, cartesian, cylindrical, spherical, polar. Vectors (in
space) as directed line segments drawn from a fixed point, addition and scalar multiplication.
Free vectors and localised vectors, Section formula for position vectors. Dot/Scalar product.
cross product. Projection of a line segment. 2-D Geometry: Basic concepts of straight line,
circle, ellipse, parabola and hyperbola. 3-D Geometry: Basic concepts of plane.

UNIT II 15 hours
Matrices: Definitions, Addition, multiplication, transpose, conjugate transpose; special type
of matrices: diagonal, scalar, upper/lower triangular, nilpotent, idempotent, symmetric, skew
symmetric, hermitian, skew hermitian matrices; trace of a square matrix; Adjoint, Singular
and Non singular matrix, Inverse of a matrix Orthogonal matrix, Elementary transformation,
Rank, Normal form, Cramer's Rule, Eigen Vectors of a Matrix. Linear dependence and
independence of vectors, Subspaces and bases and dimensions, Orthogonal bases and
orthogonal projections , Gram-Schmidt process.

UNIT III 15 hours
Differential Calculus: Derivatives of real valued functions on intervals: definition;
derivative as a rate measurer, derivative as the gradient of tangent. Working out the
derivatives of the common functions mentioned in UNIT-1; Review of methods of
differentiation. Differentials, maxima and minima of functions,tangents and normal,
L'Hospital's Rule (statements only with applications).

UNIT IV 15 hours
Integral Calculus: Antiderivatives - Review of the standard methods, integration by parts
and by partial fractions. Integral of a continuous function as the limit of sum (only for sums
arising out of equal distribution of intervals); examples of evaluation of integrals from the
definition. Statements with illustrations of the properties of definite integral, evaluation of
integrals using these properties. Improper integrals, convergence and evaluation from
definition.

Instructions to Paper Setter (Theory Examination):
● Questions should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED Marks

I 2 1 18

II 2 1 19

III 2 1 19

IV 2 1 19

50

Exam Duration:

THEORY

3 hours

Recommended Reading:

Text Books:

1. A. R. Vasishtha and A. K. Vasishtha, “Matrices”, New Edition, Krishna’s Educational
Publishers, 2013

2. B. Das, “Analytical Geometry and vector Analysis”, 4th Edition, Orient Book Co.,
2001

3. K. C. Maity and R.K. Ghosh, “Integral Calculus”,6th Edition, New Central Book
Agency(P) Ltd., 2003

4. K. C. Maity and R.K. Ghosh, “Differential Calculus”, 6th Edition, New Central Book
Agency(P) Ltd., 2004

Reference Books:

1. B. K. Pal and K. Das, “BCA Mathematics Vol. IV”, 1st Edition, U.N. Dhur & Sons
Private Ltd., 2011

2. J. R. F. Ayres, “Matrices”, Schaum’s Outline Series, 5th Edition, 2002

51

Data Communications and Networking
(MAJOR - T)
BCA - 351

Paper Title: Data Communications and Networking
Paper Code: BCA-351
Number of Hours Per Week: (L+T+P= 4+0+0)
Total Contact Hours: 60
Number of Credits: 4

Course Objectives (COs):
● CO1: Understand the fundamentals of data communications, networks, protocols, and

standards, including network models like the OSI Model and TCP/IP Protocol Suite,
addressing schemes, and physical media types.

● CO2: Explore the Data Link Layer concepts such as error detection and correction,
framing methods, flow control protocols, multiple access protocols, and
channelization techniques.

● CO3: Gain knowledge of the Network Layer, including logical addressing, internet
protocols, delivery, forwarding, routing techniques, the Transport Layer with
process-to-process delivery, and various application layer protocols like DNS,
TELNET, FTP, and HTTP.

Learning Outcomes (LOs):
Upon successful completion of the course, students will be able to understand the following
concepts:

● LO1: Network communication using the layered model concept.
● Various types of transmission media and network devices.
● LO2: Flow control, error control, and routing methods.
● LO3: Principles and operations behind various application layer protocols such as

HTTP, DNS, SMTP, and FTP.

Outline of the Course:

UNIT Topic Hours Ext.
Marks

Int.
Marks

I Introduction, Physical layer and Media 15 18

25
II Data link layer 15 19

III Network layer 15 19
IV Transport and application layer 15 19

Total 60 75 25

CONTENTS
UNIT I 15 Hours
Introduction: Data Communications, Networks, Protocols and Standards, Network Models:
Layered Tasks, OSI Model, Layers in the OSI Model, TCP/IP Protocol Suite, Addressing.
Physical Layer and Media: Analog and Digital Signals, Data Rate Limits: Nyquist and
Shannon's law, Multiplexing: FDM, TDM, Guided and Unguided media: Twisted Pair,
Coaxial, Fibre Optics, Radio, microwave, infrared, Network connecting devices hub,

52

repeater, bridge, switch, router, and gateway, Switching: Circuit Switched Networks,
Datagram Networks, Virtual Circuit Networks.

UNIT II 15 Hours
Data Link Layer: Error Detection and Correction: Error Correction using Hamming code,
Error detecting using CRC, Framing and Framing Methods, Concept of Flow Control,
Simplex protocol, Stop-and-Wait Protocol, Stop and Wait ARQ Protocol, Go back N ARQ
Protocol, Selective Repeat Protocol, Piggybacking. Multiple Access Protocols: Random
Access: Pure ALOHA, Slotted ALOHA, Carrier Sense Protocols (I-persistent, p-persistent,
and Non-Persistent CSMA), CSMA/CD, CSMA/CA. Controlled Access: Reservation,
Polling, Token Passing, Channelization: FDMA, TDMA.

UNIT III 15 Hours
Network Layer: Logical Addressing: IPv4 Addresses, Address Mapping: ARP, RARP,
BOOTP, DHCP, ICMP, IGMP. Internet protocol: Internetworking, IPv4. Delivery,
Forwarding, and Routing: Delivery, Forwarding, Unicast Routing Protocol: Distance Vector
Routing, the Count-to-Infinity problem, Link State Routing, Path Vector Routing.

UNIT IV 15 Hours
Transport Layer: Process to Process Delivery: Client/Server Paradigm, Multiplexing and
Demultiplexing, Connectionless Vs Connection Oriented Service, UDP: User Datagram,
Checksum, UDP operation, use of UDP; TCP: Services, features, segment, TCP connection,
Flow control, Error control. Application Layer: DNS: Name Space, Domain Name Space,
Distribution of name space, DNS on the internet, Resolution, Types of Record. TELNET,
Electronic Mail, FTP, HTTP.

Instructions to Paper Setter (Theory Examination):
● Questions should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED Marks

I 2 1 18

II 2 1 19

III 2 1 19

IV 2 1 19

Exam Duration:

THEORY

3 hours

53

Recommended Reading:

Text Books:
1. B. A. Forouzan, “Data Communications and Networking”, Tata McGraw Hill, 6th

Edition, Special Indian Edition, 2022.
2. A. S. Tanenbaum, N. Feamster and D. J. Wetherall “Computer Networks”, 6th Edition,

Pearson, 2022

Reference Books:
1. B. Trivedi, “Data Communication and Networks”, 1st Edition, Oxford University

Press, 2016
2. W. Stallings, “Data and Computer Communications”, 10th Edition, Pearson

Education, 2017

54

Object Oriented Programming in Java
(MAJOR - T + P)

BCA - 352

Paper Title: Object Oriented Programming in Java
Paper Code: BCA-352
Number of Hours Per Week: (L+T+P= 3+0+2)
Total Contact Hours: 75
Number of Credits: 4 (Th: 3 + Pr: 1)

Course Objectives (COs):
● CO1: To understand object-oriented programming concepts and apply them in

solving problems.
● CO2: To introduce the principles of object-oriented programming; and demonstrate

their implementation through classes, inheritance, polymorphism.
● CO3: To introduce the implementation of packages and interfaces
● CO4: To introduce the concepts of exception handling, multithreading, socket

programming.
● CO5: To introduce working with Generic classes and methods.
● CO6: To introduce the working of databases using Java.

Learning Outcomes (LOs):
● LO1: Solving real world problems using OOP techniques.
● LO2: Able to handle and understand JAVA exceptions.
● LO3: Able to develop multithreaded applications with synchronisation.
● LO4: Able to develop networking applications with connection oriented and

connectionless paradigm.
● LO5: Able to work with Generic classes and methods.
● LO6: Able to work with databases using Java.

Outline of the Course:

UNIT TOPIC Hours External
Marks

Internal
Marks

I
Introduction to Java, Classes, Methods and
Inheritance, Packages, Interface, Exception
Handling

15 18

19
II

Streams, Multithreaded Programming, Generics,
String handling 15 19

III Networking, Java Database Connectivity 15 19

IV Practical 30 19 6

Total 75 75 25

55

CONTENTS

UNIT I 15 Hours
Introduction to Java: Importance of Java to the Internet (Applets and
Applications),Security, Portability, Bytecode, Java Buzzwords, JAVA Programming
Language Syntax, Control Statements, Arrays. Classes, Methods and Inheritance: Classes
– Fundamentals, Declaring Objects, Methods, Constructors, this keyword, Garbage
Collection, finalize() method, Overloading Methods and Constructors, Argument Passing –
using objects as parameters, Returning Objects, static, final Keywords, Nested and Inner
Classes. Inheritance, Using super, When Constructors Are Called, Method Overriding,
Dynamic Method Dispatch, Abstract class, Using final with Inheritance; Packages, Interface.
Exception Handling.

UNIT II 15 Hours
Streams: I/O Basic (Streams, The stream classes, The predefined streams, Reading console
input, writing console output, Reading and writing files), java.io Package. Multithreaded
Programming – Thread Model, Priorities, Synchronisation, Messaging, Thread Class and
Runnable Interface. Deadlock, Suspending Resuming and Stopping Threads. Generics:What
is Generics? A Simple Generic Example. Generic with One Type Parameter, Generic with
Two Type Parameters, Bounded Types, Creating Generic Methods. String handling –
Comparison, Extraction, Various String operations, Searching strings, String and StringBuffer
class.

UNIT III 15 Hours
Networking: Socket overview, reserved sockets, Proxy servers, Internet addressing; Domain
naming services (DNS), Java and the net, The networking classes and interfaces, Inet address,
Factory methods, Introspection, TCP/IP server sockets, Datagrams (Datagram packet,
Datagram server and client). Java database connectivity (JDBC): Introduction to JDBC,
type of JDBC connectivity, Establishing database connections, Accessing relational databases
from Java programs.

UNIT IV 30 Hours

Practical from UNIT I, UNIT II and UNIT III.
Suggested Experiments (Appropriate JAVA SDK to be made available)

1. Write a program to create a class called Box with a parameterized constructor, along
with a method to calculate the volume of the box. Use the class to find the volume of
two boxes whose height, width and depth are 10, 20, 30 and 20, 30, 40 respectively.

2. Define a class called stack that can hold 10 integer values, then initialise top of the
stack, with push and pop methods. Write a program to push the elements into the
stack and pop out from the stack.

3. Write a Java program using a class to multiply two matrices of 3x3 order. Allow the
user to input the values through the keyboard.

4. Write a Java program to find the factorial of positive integers using recursion.
5. Write a Java program to accept the command line arguments and display the

arguments along with the positions.

56

6. Write a Java program to demonstrate method overriding where the program creates a
superclass called figure that stores the dimensions of various two-dimensional objects.
It also defines a method called area() that computes the area of an object. The
program derives two subclasses from figure. The first is Rectangle and the second is
Triangle. Each of these subclass overrides area() so that it returns the area of a
rectangle and a triangle respectively.

7. Write a Java program to create a thread and start running it using Runnable interface.
Allow the thread to display a message five times with a gap of 500ms.

8. Write a Java program to demonstrate the synchronisation of two threads using the
synchronised statement.

9. Write a Java program to demonstrate inter thread communication considering the
producer and consumer problem. There must be two classes, one for producers to
produce data and another for consumers to consume data [Hint: Use wait() and
nothing() to signal in both directions].

10. Write a Java program to copy the content of one file to another using java.io
11. An organisation has a record of its employees in the form of a list containing the

names of employees, their date of birth, date of joining the organisation and all the
designation that an employee has gone through during the tenure in the office. Write a
Java program to create and maintain such a list. The list should be implemented as a
vector since the number of employees is likely to grow over the years.

12. Add the following functionalities to the program written in exercise 11
a. List all employees whose tenure in the office has been for more than 20 years
b. The organisation has renamed the designation 'Supervisor " as"Manager ".

Write a program to do this conversion automatically in the entire list

13. Modify the program of exercise 12 to store the data in an RDBMS of your choice.
The employee list should be augmented by providing an employee id field and there
should be a provision for automatically incrementing the employee id. Write a java
program using jdbc to provide the following functionalities

a. Add data
b. View data
c. Search data through employee id

14. Write a Java program to create a generic method that takes a list of numbers and
returns the sum of all the even and odd numbers.

15. Write a socket based Java application program to create a connection between two
machines such that whatever text one machine is sending to the other will be
displayed at the latter’s screen and vice-versa

16. Create a Java application in which a particular machine is configured as the time
server which continually listens for requests for time from clients. Clients request the
server for time as a result of which the server sends the current time of the clients. The
clients make a correction of the received time by adding a very small positive constant
to the value and display the corrected time.

57

17. Implement a simple networked communications client and server. Messages are typed
into the window at the server and written across the network to the client side, then
they are displayed to demonstrate datagrams.

Instructions to Paper Setter (Theory Examination):
● Questions should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED MARKS

I 2 1 18

II 2 1 19

III 2 1 19

Instructions to Paper Setter (Practical Examination):
● Two sets of question papers should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED Marks

I 2 1 6

II 2 1 6

III 2 1 7

Exam Duration:

THEORY PRACTICAL

2 hours1
2

3 hours

Distribution of marks for practical
10% : Syntax and input/output screens
30% : Logic and efficiency (source code, pseudocode, and algorithm)
20% : Error trapping (illegal or invalid input, stack overflow, underflow, insufficient

physical memory etc
20% : Completion
20% : Result

58

Recommended Reading:

Text Books:
1. P. Naughton and H. Schildt, “Java-2 The Complete Reference”, McGraw Hill; 13th

edition, 2021.
2. Y. D. Liang, “Introduction to Java Programming, Comprehensive Version”, 7th

Edition, Pearson, 2019.

Reference Books:
1. D. Deitel, “Java How To Program”, 6th Edition, Pearson, 2004.
2. R. Krishnamoorthy and S Prabhu, “Internet and Java Programming”, New Age

International, 2002.
3. D. Flanagan, J Farley, W Crawford and K Magnusson, “Java Enterprise in a

Nutshell”, 3rd Edition, O’Reilly, 2005.

59

Data Mining
(MAJOR - T + P)

BCA - 353

Paper Title: Data Mining
Paper Code: BCA-353
Number of Hours Per Week: (L+T+P= 3+0+2)
Total Contact Hours: 75
Number of Credits: 4 (Th: 3 + Pr: 1)

Course Objectives (COs):
● CO1: Develop a comprehensive understanding of data mining concepts, including the

data mining process, techniques like clustering, association rules, decision trees, and
rule mining algorithms such as Apriori, Pincer-Search, and Border algorithm.

● CO2: Explore the principles of data warehousing, including its architecture,
components, metadata, data mart, dimensional modelling, schema, and OLAP
operations.

● CO3: Gain practical knowledge in classification and prediction techniques using
KNN, MDC, Naive Bayes, Decision Tree Induction, and clustering methods such as
k-means, k-medoids, PAM, CLARA, CLARANS, BIRCH, CURE, and DBSCAN.

Learning Outcomes (LOs):
On successful completion of the course, students will be able to:

● LO1: Ability to understand the role of data mining in the knowledge discovery
process.

● LO2: Understand and apply a wide range of clustering, estimation, prediction, and
classification algorithms, including k-means clustering, BIRCH clustering, and
classification to identify patterns.

● LO3: To familiarise with various machine learning algorithms used in data mining.

Outline of the Course:

UNIT TOPIC Hours External
Marks

Internal
Marks

I Introduction to Data Mining and Data
Warehousing. 15 18

19II Rule Mining 15 19

III Clustering, Classification and Prediction 15 19

IV Practical 30 19 6

Total 75 75 25

60

CONTENTS
UNIT I 15 Hours
Data Mining: Concepts of Data Mining, Data mining process: Data preparation, data
cleaning and data visualisation. KDD process. Data mining techniques: Clustering,
Association rules and Decision trees. Data Warehousing: Overview and Concepts: Need for
Data Warehousing, basic elements of Data Warehousing, difference between Database
System and Data warehouse, Data Warehouse architecture and its components, Metadata,
data mart, Principles of dimensional modelling, Schema, OLAP Operations.

UNIT II 15 Hours
Rule Mining: What is an association rule? Mining association rules, frequent sets and border
sets, algorithms for mining association rules - Apriori algorithm, Pincer-Search algorithm,
Border algorithm. Generalised association rule, quantitative association rule, association rule
with item constraint.

UNIT III 15 Hours
Classification and Prediction: Introduction, Classification by KNN, MDC, Naive Bayes,
Decision Tree Induction, Tree construction, principle, decision tree generation algorithms -
CART, ID3. Clustering: Partitional versus Hierarchical Clustering, types of data in
clustering. Partitional clustering methods - k-means, k-medoids, PAM, CLARA, CLARANS.
Hierarchical clustering methods - BIRCH, CURE. Density based clustering methods-
DBSCAN.

UNIT IV 30 Hours

Practical from UNIT-I, UNIT II and UNIT-III

Suggested Experiments:
1. Importing datasets in Python (e.g., CSV files, Excel sheets).
2. Data cleaning techniques such as handling missing values, data transformation, and

normalisation.
3. Data visualisation using libraries like Matplotlib and Seaborn for insights and

patterns.
4. Implementing clustering algorithms like K-means or DBSCAN for grouping similar

data points.
5. Association rule mining using the Apriori algorithm to discover relationships between

items in a dataset.
6. Decision tree construction using libraries like Scikit-learn for classification and

prediction tasks.
7. Implementing the Apriori algorithm to mine frequent itemsets and generate

association rules from transactional data.
8. Building classification models using K-nearest neighbours (KNN), Naive Bayes, and

Decision Trees (e.g., CART, ID3) with Python libraries like Scikit-learn.
9. Evaluating model performance using metrics such as accuracy, precision, recall, and

F1-score.
10. Implementing partitional clustering algorithms (e.g., K-means, K-medoids).

61

Instructions to Paper Setter (Theory Examination):
● Questions should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED Marks

I 2 1 18

II 2 1 19

III 2 1 19

Instructions to Paper Setter (Practical Examination):
● Two sets of question papers should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED Marks

I 2 1 6

II 2 1 6

III 2 1 7

Exam Duration:

THEORY PRACTICAL

2 hours1
2

3 hours

Distribution of marks for practical
10% : Syntax and input/output screens
30% : Logic and efficiency (source code, pseudocode, and algorithm)
20% : Error trapping (illegal or invalid input, stack overflow, underflow, insufficient

physical memory etc
20% : Completion
20% : Result

62

Recommended Reading:

Text Books:

1. A.K. Puzari, “Data Mining Techniques”, 4th Edition, University Press, 2016
2. J. Han, M. Kamber and J. Pei, “Data Mining: Concepts and Techniques”, 3rd Edition,

Morgan Kaufman, 2011.

Reference Books:
1. P. Tan, M. Steinbach and V. Kumar, “Introduction to Data Mining”, 1st Edition,

Pearson Education, 2016.
2. J. VanderPlas, “Python Data Science Handbook”, 2nd Edition, O’Reilly, 2017

63

Semester VII
Text Analytics

(MAJOR - T + P)

BCA-401

Paper Title: Text Analytics
Paper Code: BCA-401
Number of Hours Per Week : (L+T+P= 3+0+2)
Total Contact Hours : 75
Number of Credits: 4 (Th: 3 + Pr: 1)

Course Objectives (COs):

● CO1: Understand the techniques, methods, and applications related to the analysis of
textual data.

● CO2: Implement text analytics tasks using Python and relevant packages
● CO3: To inculcate knowledge on basic Natural Language Processing (NLP)

concepts .

Learning Outcomes (LOs):
On successful completion of the course, students will be able to:

● LO1: Understand the fundamental concepts of text analytics, including NLP,
information retrieval, and machine learning as applied to text.

● LO2: Learn various text preprocessing techniques such as tokenization, stemming,
lemmatization, and stop-word removal to prepare textual data for analysis.

● LO3: Explore different methods for representing text data, including bag-of-words,
Term Frequency-Inverse Document Frequency (TF-IDF).

● LO4: Explore text classification methods for assigning predefined categories or labels
to text documents, including supervised learning approaches.

● LO5: Learn how to evaluate the performance of text analytics models using metrics
like precision, recall, F1 score, accuracy.

● LO6: Gain practical experience by implementing text analytics algorithms and
models using programming languages like Python and relevant libraries (e.g., NLTK,
scikit-learn etc.)

Outline of the Paper:

64

UNIT Topic Hours External
Marks

Internal
Marks

I Overview of NLP, Python for Text Analysis 15 18

19II Foundations of Text Processing 15 19

III
Text Classification, Text Similarity and

Clustering
15 19

IV Practical 30 19 6

Total 75 75 25

CONTENTS
UNIT I 15 Hours
Overview of Natural Language Processing: What is Natural Language, The Philosophy of
language, Language Acquisition and Usage, Linguistics – Areas of study, Language Syntax
and Structure, Words, Phrases, Clauses, Basic concept of Grammar: Dependency,
Constituency, Word order typology, Language Semantics, Lexical Semantics – lemmas, word
forms, homonyms, homographs and homophones, heteronyms and heterographs, polysemes,
capitonyms, Synonyms and Antonyms, Hyponyms and Hypernyms, Wordnet. Python for
Text Analysis: Working with text data – String literals, Representing strings, String
Operations– Basic operations, Indexing and slicing, String Methods, Formatting, Regular
expressions, Use of the text analytics framework- NLTK.

UNIT II 15 Hours
Foundations of text processing: Text Corpora, Text processing and Normalisation -
Removing HTML tags, accented characters, special characters, stemming, lemmatization,
removing stopwords, Text tokenization – sentence tokenization and word tokenization,
Feature Engineering for Text representation - Bag of words (BOW) model, Bag of N-grams
model, implementation using scikitlearn’s CountVectorizer, TF-IDF model, Document
vectorization using Tf-idf, implementation using TfidfVectorizer, Minimum edit distance.

UNIT III 15 Hours
Text Classification: Formal definition, Automated Text classification, task variants – Binary
classification, Multiclass classification, Multi-label classification, Text classification
blueprint, Data preprocessing and Normalisation for Text classification, Building train and
test datasets, Classification models – multinomial Naïve Bayes, logistic regression,
Evaluation metrics – Accuracy, Precision, recall, F1-score, Understanding the Confusion
matrix, TF-idf features with classification models. Text Similarity and Clustering: Text
similarity, Analysing term similarity - hamming distance, Euclidean distance, cosine distance
and cosine similarity, Analysing Document similarity using cosine similarity, Document
Clustering: Brief description of - Hierarchical clustering models, Partitioned based or
Centroid based clustering, Distribution based clustering, Density based clustering, Detailed
Description of - K-Means clustering algorithm with practical implementation, Agglomerative
Hierarchical Clustering.

UNIT IV 30 Hours

Practicals for the concepts from UNIT-I, UNIT II and UNIT-III

Suggested Experiments:

1. Use regular expressions for removing :
a) all punctuations from a body of text
b) digits
c) html tags
d) white spaces

2. Compile a regular expression for words containing a sequence of two 'a's from a body
of text and find the matches

3. Find all words ending in the letter ‘a’
4. Perform the following string operations and methods:

65

concatenate two strings, indexing and slicing a string, replace(), lower(),split
(),strip(),join() etc.

5. Perform lemmatization and remove all stop words from a body of text.
6. Tokenize a body of text and count the number of tokens.
7. Find the minimum edit distance between two strings
8. Using TF-IDF, find the most important words from 3 short documents.
9. Find the similarity of 3 documents using the cosine similarity measure.
10. Write a function using NLTK library to tokenize the input stream of data into words

or sentences.
11. Write a Python function using regular expressions to identify noun phrases in a

sentence and extract them.
12. Implement a Python script to calculate the semantic similarity between two given

sentences using WordNet in NLTK.
13. Using NLTK, create a Python program that generates synonyms and antonyms for a

given word. Use NLTK for accessing WordNet's lexical database.
14. Write a Python script to clean and preprocess a given text dataset, including tasks like

lowercasing, punctuation removal, and stop word removal.
15. Implement a TF-IDF model using scikit-learn's TfidfVectorizer to extract features

from a text corpus.
16. Implement a spell checker in Python using dynamic programming and the minimum

edit distance algorithm. Test the spell checker on a dataset of misspelt words and
evaluate its accuracy.

17. Implement a Bag of N-grams model (with varying N) using scikit-learn's
CountVectorizer on a text corpus. Compare the performance of different N-gram
models in capturing textual features.

18. Calculate term similarity between two given words using different distance metrics
such as Hamming distance, Euclidean distance, and cosine similarity. Compare and
contrast the results obtained from each metric.

19. Implement K-Means clustering algorithm from scratch in Python without using any
external libraries. Apply the custom K-Means implementation to a text dataset and
compare the results with scikit-learn's K-Means.

20. Implement multinomial Naïve Bayes and logistic regression classifiers using
scikit-learn for a text classification task. Train the models on a labelled dataset and
evaluate their performance using accuracy, precision, recall, and F1-score.

Instructions to Paper Setter (Theory Examination):
● Questions should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED Marks

I 2 1 18

II 2 1 19

III 2 1 19

66

Instructions to Paper Setter (Practical Examination):
● Two sets of question papers should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED Marks

I 2 1 6

II 2 1 6

III 2 1 7

Exam Duration:

THEORY PRACTICAL

2 hours1
2

3 hours

Distribution of marks for practical
10% : Syntax and input/output screens
30% : Logic and efficiency (source code, pseudocode, and algorithm)
20% : Error trapping (illegal or invalid input, stack overflow, underflow, insufficient

physical memory etc
20% : Completion
20% : Result

Recommended Reading:

Text Books:
1. D. Sarkar, “Text Analytics with Python”, Apress, 2nd Edition, 2019

2. D. Jurafsky and H. J. Martin, “Speech and Language Processing: An Introduction to

Natural Language Processing, Computational Linguistics, and Speech Recognition.”

India, Prentice Hall, 2000.

Reference Books:

1. C. Manning and H.Schutze, “Foundations of Statistical Natural Language
Processing”, Cambridge, MIT Press, 1999.

2. S. Bird, et al. “Natural Language Processing with Python”, United States, O'Reilly
Media, 2009.

3. J. Kogan and M. W. Berry, “Text Mining: Applications and Theory” Germany, Wiley,
2010.

67

Theory of Computation and Compiler Design
(MAJOR - T)
BCA-402

Paper Title: Theory of Computation and Compiler Design
Paper Code: BCA-402
Number of Hours Per Week: (L+T+P = 4+0+0)
Total Contact Hours : 60
Number of Credits: 4

Course Objectives (COs):
● CO1: To demonstrate the interplay between different models and formal languages.
● CO2: Employ finite state machines to solve problems in computing.
● CO3: Classify machines by their power to recognize the languages.
● CO4: Explain deterministic and non-deterministic machines.
● CO5: Emphasise the concepts learnt in lexical analysis, syntax analysis, semantic

analysis, intermediate code generation and type checking process through several
programming exercises.

● CO6: To provide the understanding of language translation peculiarities by designing
a complete translator for mini language.

Learning Outcomes (LOs):
On successful completion of the course, students will be able to:

● LO1: Employ finite state machines to solve problems in computing and classify
machines by their power to recognize languages.

● LO2: Understand the basic concept of compiler design, and its different phases which
will be helpful to construct new tools like LEX, YACC, etc.

● LO3: Ability to implement semantic rules into a parser that performs attribution while
parsing and apply error detection and correction methods.

● LO4: Apply the code optimization techniques to improve the space and time
complexity of programs while programming.

● LO5: Ability to design a compiler for a concise programming language.

Outlines of the Course:

UNIT Topic Hours External
Marks

Internal
Marks

I Foundations of Automata Theory and Formal
Languages

15 19

25II Stages of Compilation, Lexical Analysis and
Parsing

15 19

III Semantic Analysis, Symbol Table Organization
and Code Optimization

15 19

IV Code Generation 15 18

68

Total 60 75 25

CONTENTS

UNIT I 15 hours
Languages, definitions, Regular Expressions, Regular Grammars, Acceptance of Strings and
Languages, Finite Automaton Model, DFA, NFA, conversion of NFA to DFA, Conversion of
Regular Expression to NFA. Regular Expressions and Regular Languages, Context-Free
Grammars (CFG): Definition and designing CFGs, Derivations Using a Grammar, Parse
Trees, Ambiguity and Elimination of Ambiguity, Elimination of Left Recursion, Left
Factoring. Pushdown Automata and Context-Free Languages: Introduction to Pushdown
Automata (PDA), Design of PDA, Equivalence of CFGs and PDAs.

UNIT II 15 hours
Chomsky hierarchy of Languages, Phases of compilation overview, Pass, Phase,
Interpretation, Bootstrapping. Top Down Parsing: Parse Trees, Ambiguous Grammars,
Backtracking, LL (1), Recursive Descent parsing, Predictive parsing, pre-processing steps for
predictive processing. Bottom-up parsing and handling pruning, LR (k) grammar parsing,
LALR (k) grammars, Error Recovery in parsing, parsing ambiguous grammars, YACC parser
generator.

UNIT III 15 hours
Intermediate source program form: 3 address code. Introduction to Attribute Grammars,
Syntax Directed Translation, Inherited Grammars, Type Checking. Symbol table format,
organisation, storage allocation: static, runtime and heap allocation for arrays, strings and
records. Consideration for optimization, Scope of optimization, DAG representation, Basic
blocks, Common Subexpression elimination, dead code elimination.

UNIT IV 15 hours
Absolute Code, Relocatable Machine Code, Assembler Code, Register and Address
Descriptors, Implementing Global Register Allocation, Usage Counts, Using DAG for
register allocation, Simple Code generation Algorithm, Generic Code generation Algorithm,
Generating code from DAG.

Instructions to Paper Setter (Theory Examination):
● Questions should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED Marks

I 2 1 19

II 2 1 19

III 2 1 19

69

IV 2 1 18

Exam Duration:

THEORY

3 hours

Recommended Reading:

Text Books:

1. J. E. Hopcroft, R. Motwani and J. D. Ullman, “Introduction to Automata Theory
Languages and Computation”, Pearson, 3rd edition, 2014

2. A.V. Aho and J D Ullman, “Principles of Compiler Design”, Pearson Education
3. A. W. Appel, “Modern Compiler Construction in C”, Cambridge University Press,

Reference Books:
1. K. C. Louden, “Compiler Construction: Principles And Practice”, Thomson/ Delmar

Cengage Learning, 2006
2. D. Brown, J. Levine and T. Mason, “Lex & yacc”, O’reilly Media, 2nd Edition, 2002
3. K. Cooper and L. Torczon, “Engineering a compiler”, O’reilly Media, 2nd Edition,

Morgan Kaufmann, 2011

70

Internet of Things
(MAJOR / MINOR - T + P)

BCA-403 / BCA-404

Paper Title :Internet of Things
Paper Code: BCA-403 / BCA-404
Number of Hours Per Week : (L+T+P= 3+0+2)
Total Contact Hours : 75
Number of Credits: 4 (Th: 3 + Pr: 1)

Course Objectives (COs):

● CO1: Students will posses a solid understanding of the foundational concepts of IoT
● CO2: Students will be exposed to the interconnection and integration of the physical

world and the cyber space.
● CO3: Students will gain proficiency in designing, developing and deploying IoT

solutions on the Arduino platform.

Learning Outcomes (LOs):
On successful completion of the course, students will be able to:

● LO1: Ability to describe and define IoT Concepts
● LO2: Proficiency in IoT Technologies(including sensors, actuators, microcontrollers,

communication protocols (e.g., MQTT, CoAP)
● LO3: Skills in IoT Application Development regarding designing, developing, and

deploying IoT applications for specific use cases or scenarios, integrating sensor data
acquisition, data processing, decision-making logic, and actuation mechanisms.

● LO4: Understanding of IoT Security and Privacy
● LO5: Problem-Solving and Critical Thinking
● LO6: Effective Communication and Collaboration

Outline of the Paper:

UNIT Topic Hours External
Marks

Internal
Marks

I Introduction to Internet of Things (IoT)
and Sensors

15 18 19

II IoT Protocols, IoT Cloud and Securities 15 19

III Arduino and Node Micro Controller Unit
(MCU)

15 19

IV Practical 30 19 6

Total 75 75 25

71

CONTENTS
UNIT I 15 Hours
Introduction to IoT: Overview of IoT, Application areas of IoT, Characteristics of IoT,
Things in IoT, IoT stack, Enabling technologies, IoT challenges, IoT levels. Sensors: Sensor
interfacing, Types of sensors:gas sensor,obstacle sensor,ultrasonic sensor,gyro sensor, LDR
sensor and pH sensor, Controlling sensors, Microcontrollers

UNIT II 15 Hours
Protocols for IoT: Messaging protocols, Transport protocols, IPv4, IPv6, UR. Cloud for
IoT: IoT and cloud, Fog computing, Security in cloud, IoT Security: Security Basic, IoT
system Functionalities, Security architecture, Security Requirements, Challenges in IoT
Securities

UNIT III 15 Hours
Basics of Arduino: Introduction,Arduino IDE, Basics commands, serial commands, LCD
commands. Overview of Node MCU: Programming Node MCU using Arduino IDE,
Configuring ThinkSpeak cloud Service, NodeMCU over WIFI, Sending data to ThinkSpeak
cloud.

UNIT IV 30 Hours

List of H/W components required for practical:
1. Arduino Uno Board
2. Node MCU Board
3. MQ6 and MQ125 gas sensor
4. IR sensor
5. Ultrasonic sensor
6. gyro sensor MPU-6050
7. LDR sensor
8. 16O2 LCD Display 16x2
9. Ph Sensor Kit
10. LED lights
11. 1K Ohm – 10KOhm Resistors
12. Power supply 3V-25V DC

Suggested Basic Experiments:
1. Program an LED to blink on and off at regular intervals
2. Use Push buttons to turn LED on and off
3. Read analog input from potentiometer to adjust LED brightness(using PWM)
4. Demonstrate the working of Obstacle sensors using ultrasonic sensor
5. Demonstrate the working of LDR sensor and display the output in Serial Monitor
6. Demonstrate the working of pH sensor and display the output in Serial Monitor
7. Using a GAS sensor and two LEDs (RED-present and GREEN-absent), determine if

GAS is detected or not.
8. Arduino program to display hello world in LCD screen
9. Controlling an LED using LDR sensor
10. Controlling an LED using web page

72

Suggested Advance Experiments:
1. Connect Node MCU to the internet and send data to ThinkSpeak Cloud Platform
2. Set up MQTT communication between NodeMCU and a broker for IoT application
3. Monitor environmental parameters (eg. temperature, humidity etc) remotely via web

interface.
4. Build a water sprinkler control system.
5. Air Quality Monitoring System.

Instructions to Paper Setter (Theory Examination):
● Questions should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED Marks

I 2 1 18

II 2 1 19

III 2 1 19

Instructions to Paper Setter (Practical Examination):
● Two sets of question papers should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED Marks

I 2 1 9

III 2 1 10

Exam Duration:

THEORY PRACTICAL

2 hours1
2

3 hours

Distribution of marks for practical
10% : Syntax and input/output screens
30% : Logic and efficiency (source code, pseudocode, and algorithm)
20% : Error trapping (illegal or invalid input, stack overflow, underflow, insufficient

physical memory etc

73

20% : Completion
20% : Result

Recommended Reading:

Text Books:
1. S. K. Vasudevan, A. S. Nagarajan and R. Sundaram, “Internet of Things'' , Wiley

India, 2019
2. R. Singh, A. Gehlot, L. R. Gupta, B. Singh and M. Swain, “Internet Of Things With

Raspberry Pi And Arduino”, 2019
3. U. Dutta, N. Khurana and Devdutt, “The Internet of Things Using NODEMCU a

Practical approach to Master IoT”, 2021

Reference Books:

1. V. Madisetti and A. Bahga, “Internet of Things: (A Hands-on Approach)”,
Universities Press (INDIA) Private Limited 2014, 1st Edition.

2. D. Hence and at el, “IoT Fundamentals”, Cisco Press,2017
3. R.Singh, “IoT based Projects”, BPB, 2020

74

https://play.google.com/store/books/author?id=Dr.+Umesh+Dutta
https://play.google.com/store/books/author?id=Nilansh+Khurana

Semester VIII

Machine Learning
(MAJOR/MINOR - T + P)

BCA-450 / BCA-451
Paper Title: Machine Learning
Paper Code: BCA-450 / BCA-451
Number of Hours Per Week: (L+T+P = 3+0+2)
Total Contact Hours : 75
Number of Credits: 4 (Th: 3 + Pr: 1)

Course Objectives (COs):
● CO1: Understand the fundamental concepts of machine learning
● CO2: Gain proficiency in data preprocessing techniques such as data cleaning, data

transformation and Exploratory data analysis (EDA)
● CO3: Develop skills in supervised and unsupervised learning algorithms, feature

engineering and model evaluation methods

Learning Outcomes (LOs):
On successful completion of the course, students will be able to:

● LO1: Understand the fundamental concepts and techniques of machine learning.
● LO2: Learn to apply machine learning algorithms to real-world problems.
● LO3: Gain practical experience in implementing and evaluating machine learning

models.
● LO4: Explore current research trends and applications of machine learning.

Outlines of the Paper:

UNIT Topic Hours External
Marks

Internal
Marks

I Introduction to Machine Learning Exploratory
Data Analysis (EDA), Modelling Errors 15 18

19II Supervised Learning 15 19

III Unsupervised Learning, Feature Engineering and
Model Evaluation and Selection. 15 19

IV Practical 30 19 6
Total 75 75 25

CONTENTS

UNIT I 15 hours

Introduction to ML: Definition, classification of machine learning: supervised ML,
unsupervised ML, Semi-Supervised ML, Reinforcement Learning, Difference between AI
and ML, Machine Learning pipeline. Data in ML: Labelled and unlabelled data, Numeric
data, Categorical Data, Ordinal data. Overview of Exploratory Data Analysis (EDA). Data
Cleaning: missing values, outliers, noise, mean, median, mode imputation, K-Nearest
Neighbours (KNN) predictive imputation, Z-Score, Interquartile Range (IQR). Data

75

Transformation: Min-Max Normalisation, Z-score Standardisation, Encoding Categorical
Data: one-hot encoding, label encoding.Modelling Errors: Overview

UNIT II 15 hours

Supervised Learning: Linear Regression: Simple and Multiple Linear Regression, cost
function, Mean Squared Method, Gradient Descent, R-Mean Squared Method, Logistic
Regression: Overview, Sigmoid function, K-Nearest Neighbours (k-NN), Support Vector
Machines (SVM), Naïve Bayes Classifier, ID3 Algorithm, CART, Random Forests
(Introduction), Neural Networks (Introduction).

UNIT III 15 hours

Unsupervised Learning: Clustering in ML, Types of clustering methods, Distance Metrics:
Euclidean Distance, Cosine Similarity, K-Means Clustering, DBSCAN algorithm,
Hierarchical Clustering, Hidden Markov Model (HMM). Feature Engineering: Overview,
polynomial features, feature scaling, recursive feature elimination, Principal Component
Analysis (PCA), t-Distributed Stochastic Neighbour Embedding (t-SNE), Association Rule
Learning (Apriori). Model Evaluation and Selection: Cross-validation, Bias-Variance Trade
off, Confusion Matrix, Evaluation Metrics (e.g., Accuracy, Precision, Recall, F1 Score).

UNIT IV 30 hours

Suggested Experiments:

1. Use pandas to load a dataset into a DataFrame and display the first few rows.
2. Use pandas to get a summary of the dataset, including information about the columns

and data types.
3. Identify and handle missing data by either imputing missing values or removing

rows/columns with missing values.
4. Clean the data by removing duplicates, correcting data types, and standardising

values.
5. Data Visualization:

a. Create a histogram of a numerical variable to visualise its distribution.
b. Create a box plot to visualise the distribution of a numerical variable and

identify outliers.
c. Create a scatter plot to visualise the relationship between two numerical

variables.
d. Create a bar plot to visualise the frequency of a categorical variable.

6. Use seaborn to create a heatmap of the correlation matrix to visualise the relationships
between numerical variables.

7. Use pandas to group the data by a categorical variable and calculate summary
statistics for each group.

76

8. Feature Engineering:
a. Create new features by transforming existing ones (e.g., extracting date

components from a datetime column).
b. Encode categorical variables using one-hot encoding or label encoding.

9. Data Transformation:
a. Normalise numerical variables to scale them to a standard range.
b. Standardise numerical variables to have a mean of 0 and a standard deviation

of 1.
10. Spam Email Classification using Naive Bayes Classifier:

a. Use a dataset containing emails labelled as spam or not spam.
b. Preprocess the data by tokenizing the emails, removing stop words, and

converting words to lowercase.
c. Implement a Naive Bayes classifier to classify emails as spam or not spam

based on their content.
11. Implement linear regression using NumPy on a dataset like the Boston Housing

dataset to predict house prices.
12. Use scikit-learn to implement linear regression on a real dataset and evaluate its

performance.
13. Use scikit-learn to implement logistic regression for binary classification on a dataset

like the Titanic dataset.
14. Implement logistic regression from scratch using NumPy and compare the results

with scikit-learn.
15. Implement decision trees from scratch using Python and use them for classification on

a dataset like the Iris dataset.
16. Use scikit-learn to implement random forests for classification on a dataset like the

Titanic dataset.
17. Use scikit-learn to implement SVM for classification on a dataset like the Iris dataset.
18. Implement SVM from scratch using a library like CVXOPT and apply it to a simple

dataset for binary classification.
19. Implement k-NN from scratch using NumPy and apply it to a dataset like the Iris

dataset for classification.
20. Use scikit-learn to implement k-NN for classification on a dataset like the Titanic

dataset.
21. Use scikit-learn to implement K-Means clustering on a dataset like the Iris dataset to

cluster the data into distinct groups.
22. Apply K-Means clustering to a dataset for image compression.
23. Use scikit-learn to apply PCA to reduce the dimensionality of a dataset like the Iris

dataset and visualise the principal components.
24. Use PCA for feature extraction and apply a machine learning model on the

transformed dataset.
25. Use scikit-learn to implement cross-validation to evaluate the performance of

different machine learning models on a dataset.
26. Compare the performance of models using different evaluation metrics (e.g.,

accuracy, precision, recall).
27. Experiment with different feature engineering techniques (e.g., polynomial features,

feature scaling) using scikit-learn and observe their impact on model performance.

77

28. Use scikit-learn to implement feature selection techniques (e.g., recursive feature
elimination) to identify the most important features for a given task.

Instructions to Paper Setter (Theory Examination):
● Questions should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED Marks

I 2 1 18

II 2 1 19

III 2 1 19

Instructions to Paper Setter (Practical Examination):
● Two sets of question papers should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED Marks

I 2 1 6

II 2 1 6

III 2 1 7

Exam Duration:

THEORY PRACTICAL

2 hours1
2

3 hours

Distribution of marks for practical:

10% : Syntax and input/output screens

30% : Logic and efficiency (source code, pseudocode and algorithm)

20% : Error Trapping

20% : Completion

20% : Result

78

Recommended Reading:

Text Books:
1. A. Geron, “Hands on Machine Learning with Scikit-Learn & Tensorflow”, 3rd

Edition, O’Reilly, 2017.
2. C.M. Bishop, “Pattern Recognition and Machine Learning”, Reprint-First Edition

2006, Springer, 2016
3. J. VanderPlas, “Python Data Science Handbook”, 2nd Edition, O’Reilly, 2017

Reference Books:

1. M. Andreas, “Introduction to Machine Learning with Python”, O’Reilly, 2016
2. W. McKinney, “Python for Data Analysis”, 2nd Edition, O’Reilly, 2017

3. S. Raschka, “Machine Learning with Scikit-Learn”, Packt Publishing, 1st Edition,
2022

79

Computer Oriented Numerical Methods
(MAJOR - T + P)

BCA-453

Paper Title: Computer Oriented Numerical Methods
Paper Code: BCA-453
Number of Hours Per Week: (L+T+P = 3+0+2)
Total Contact Hours : 75
Number of Credits: 4 (Th: 3 + Pr: 1)

Course Objectives (COs):

● CO1: Introduce fundamental concepts in Computer Arithmetic and Equation Solving,
● CO2: Introduce Polynomial Interpolation, Numerical Differentiation, Integration, and

Differential Equations.
● CO3: Implement the above algorithms using the C language.

Learning Outcomes (LOs):
On successful completion of the course, students will be able to:

● LO1: Demonstrate proficiency in Computer Arithmetic and Equation Solving.
● LO2: Utilise Polynomial Interpolation Techniques to interpolate data.
● LO3: Applying Numerical Techniques for Differentiation and Integration
● LO4: Solving Differential Equations Using Numerical Methods
● LO5: Developing Computational Skills in Mathematical Analysis

Outlines of the Paper:

UNIT Topic Hours External
Marks

Internal
Marks

I

Computer Arithmetic,Solution of a Single
Polynomial or Transcendental
Equation,Solution of simultaneous algebraic
Equations.

15 18

19
II Polynomial Interpolation 15 19

III
Numerical Differentiation and Integration,
Solution of Differential Equations 15 19

IV Practical 30 19 6

Total 75 75 25

CONTENTS

UNIT I 15 hours

Computer Arithmetic: Normalised floating-point representation of real numbers and
operations using it; normalisation and its consequences. Errors in Arithmetic Operations:

80

Types and measurement, absolute and relative error, approximation and significant figure.
Solution of a Single Polynomial or Transcendental Equation: Rate of convergence of
iterative methods (definition only), Method of bisection, false-position, Newton Raphson
method, secant method, comparison of the methods. Solution of simultaneous algebraic
Equations: Gauss elimination method, pivotal condensation, ill conditioned equations and
iterative refinement, Gauss-Seidel iterative method.

UNIT II 15 hours

Polynomial Interpolation: Lagrange's interpolating polynomial, difference tables and
Newton's divided difference interpolating polynomial, Newton-Gregory forward and
backward difference interpolating polynomials.

UNIT III 15 hours

Numerical Differentiation and Integration: numerical differentiation, quadrature formulae,
trapezoidal rule, and Simpson's one-eight rules. Solution of Differential Equations: Euler's
method, second and fourth order Runge-Kutta methods, predictor-corrector method for
solving first order, first-degree differential equations.

UNIT IV 30 hours

Practical Assignments (Any Appropriate C compiler to be made available)

Suggested Experiments:
1. Write a program to find the solution of any polynomial or transcendental equations by

using Bisection Method
2. Write a program to find the solution of any polynomial or transcendental equations by

using the false-position method.
3. Write a program to find the solution of any polynomial or transcendental equations by

using Newton-Raphson method.
4. Write a program to find the solution of any polynomial or transcendental equations by

using secant method.
5. Write a program to find the solution of simultaneous algebraic equations by Gauss

elimination method.
6. Write a program to compute an interpolation by Newton’s divided difference

interpolating polynomial.
7. Write a program to compute an interpolation by Newton-Gregory forward difference

interpolating polynomials.
8. Write a program to compute an interpolation by Newton-Gregory backward difference

interpolating polynomials.
9. Write a program to solve a numerical integration by trapezoidal rule.
10. Write a program to solve a numerical integration by Simpson’s one-third rule.
11. Write a program to solve a numerical integration by Simpson’s three-eight rule.
12. Write a program to find the derivatives using backward difference formulas.
13. Write a program to find the derivatives using the forward difference formula.
14. Write a program to solve any differential equation by using Euler's method.

81

15. Write a program to solve any differential equation by using second and fourth order
Runge-Kutta methods.

16. Write a program to solve any first order, first-degree differential equation by using
predictor-corrector method .

Instructions to Paper Setter (Theory Examination):
● Questions should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED Marks

I 2 1 18

II 2 1 19

III 2 1 19

Instructions to Paper Setter (Practical Examination):
● Two sets of question papers should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED Marks

I 2 1 6

II 2 1 6

III 2 1 7

Exam Duration:

THEORY PRACTICAL

2 hours1
2

3 hours

Distribution of marks for practical:

10% : Syntax and input/output screens

30% : Logic and efficiency (source code, pseudocode and algorithm)

20% : Error Trapping

20% : Completion

20% : Result

82

Recommended Reading:

Text Books:

1. V. Rajaraman, “Computer Oriented Numerical Methods”, 5th Edition, Prentice Hall
India, New Delhi, 2002.

2. B. S. Grewal, “Numerical Methods”, 7th Edition, Khanna Publishers, Delhi, 2005

Reference Books:

1. E. Balagurusamy, “Numerical Methods”, Standard Edition, McGraw Hill Education,
2017

2. S. C. Chapra and R. P. Canale, “Numerical Methods for Engineers”, 8th Edition,
McGraw Hill, 2021

83

Mobile Application Development

(MAJOR - T + P)
BCA - 454

Paper Title: Mobile Application Development
Paper Code: BCA-454
Number of Hours Per Week: (L+T+P= 3+0+2)
Total Contact Hours: 75
Number of Credits: 4 (Th: 3+ Pr: 1)

Course Objectives (COs):
● CO1: Introduce mobile applications development to the students using the android

platform as the basis of teaching the techniques and
● CO2: Introduce UI/UX application concepts.
● CO2: Introduce Design patterns and equipping students with the essential knowledge

and skills to design, develop, and deploy Android applications.

Learning Outcomes (LOs):
● LO1: Describe and define android programming structure

● LO2: Extend one knowledge in application development

● LO3: Obtain new findings through experiment and demonstration

● LO4: Design and develop their own application which is tailored to their needs

● LO5: Create and formulate plans and solutions that will help solve problems

● LO6: Integrate the skills with the ability to access and decide self-selected criteria

based on observation.

Outline of the Course:

UNIT TOPIC Hours External
Marks

Internal
Marks

I Introduction 15 18

19II User Interaction and Experience 15 19

III Saving User Data 15 19

IV Practical 30 19 6

Total 75 75 25

84

CONTENTS
UNIT I 15 Hours
Introduction to Android: Your first Android app, Layouts and resources for the UI.
Activities and intents: Activities and intents, Activity lifecycle and state. Testing, debugging,
and using support libraries: The Android Studio debugger, The Android Support Library

UNIT II 15 Hours
User Interaction: Buttons and clickable images, Input controls, Menus and pickers, User
navigation. User experience: Drawables, styles, and themes ,Material Design , Resources for
adaptive layouts AsyncTask and AsyncTaskLoader, Connecting to the Internet, Broadcast
receivers, Services, Notifications, Alarm managers, Transferring data efficiently

UNIT III 15 Hours
Preferences and SQLite: Data storage with SQLite ,Shared preferences,SQLite primer, store
data using SQLite database,ContentProviders, loaders to load and display data, Permissions,
performance and security.

UNIT IV 30 Hours

Practical involved the concepts from UNIT-I, UNIT II and UNIT-III
Suggested Experiments:

1. Install Android Studio and Run Hello World Program.
2. Create an android app with Interactive User Interface using Layouts.
3. Create an android app that demonstrates working with TextView Elements.
4. Create an android app that demonstrates Activity Lifecycle and Instance State.
5. Create an android app that demonstrates the use of Keyboards, Input Controls, Alerts,

and Pickers.
6. Create an android app that demonstrates the use of an Options Menu.
7. Create an android app that demonstrates Screen Navigation using the App Bar and

Tabs.
8. Create an android app to Connect to the Internet and use BroadcastReceiver.
9. Create an android app to show Notifications and Alarm manager.
10. Create an android app to save user data in a database and use of different queries.

Suggested advance experiments:
1. Create a calculator app with all the basic features.
2. Create a note app where users can note down important information and store the data

in the database.
3. Develop an app that uses AsyncTask to perform background tasks, such as fetching

data from the internet.
4. Build an app that fetches data in JSON format from an API and parses it to display

relevant information in the app.
5. Integrate a WebView component to display web content within the app.
6. Integrate a library like Picasso or Glide to efficiently load and cache images in the

app.

85

7. Develop an app with multiple screens and practice navigating between them using
intents.

8. Build a basic currency converter app that converts between two currencies.
9. Develop a simple quiz app with multiple-choice questions and track user scores.
10. Build a simple phone book app that will store the contact in the database.

Instructions to Paper Setter (Theory Examination):
● Questions should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED Marks

I 2 1 18

II 2 1 19

III 2 1 19

Instructions to Paper Setter (Practical Examination):
● Two sets of question papers should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED Marks

I 2 1 6

II 2 1 6

III 2 1 7

Exam Duration:

THEORY PRACTICAL

2 hours1
2

3 hours

Distribution of marks for practical
10% : Syntax and input/output screens
30% : Logic and efficiency (source code, pseudocode, and algorithm)
20% : Error trapping (illegal or invalid input, stack overflow, underflow, insufficient

physical memory etc
20% : Completion
20% : Result

86

Recommended Reading:

Text Books:
1. M. K. C. Yadav, P. S. Palkar and R. Jaiswal, “Android Developer Fundamentals”, 1st

Edition, Himalaya Publishing House, 2018.
2. D. Griffiths, “Head First Android Development: A Brain-Friendly Guide”, 2nd

Edition, O’Reilly, 2017

Reference Book:

1. J. Horton, “Android Programming For Beginners”, 3rd Edition, Packt Publishing,
2015.

2. J. Sheusi, “Android Application Development for JAVA Programmers”, 1st Edition,
Cengage, 2013

87

https://new.himpub.com/book-author/manoj-kumar-c-yadav/
https://new.himpub.com/book-author/priti-shailendra-palkar/
https://www.amazon.in/Dawn-Griffiths/e/B002UY56AS/ref=dp_byline_cont_book_1
https://www.amazon.in/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=James+Sheusi&search-alias=stripbooks

Artificial Intelligence

(MAJOR - T + P)

BCA-455

Paper Title: Artificial Intelligence
Paper Code: BCA-455
Number of Hours Per Week : (L+T+P= 3+0+2)
Total Contact Hours : 75
Number of Credits: 4 (Th: 3+ Pr: 1)

Course Objectives (COs):

● CO1: Understand the fundamental concepts and techniques of artificial intelligence.

● CO2: Identify problems that may be solved using artificial intelligence.

● CO3: Understand knowledge representation using logic and reasoning

● CO4: Understand the concepts of machine learning and its algorithms.

● CO5: Apply basic principles of AI in solutions that require problem-solving,

inference, perception, knowledge representation, and learning.

Learning Outcomes (LOs) :
On successful completion of the course, students will be able to:

● LO1: Understand the informed and uninformed problem types and apply search
strategies to solve them.

● LO2: Apply difficult real-life problems in a state space representation so as to solve
them using AI techniques like searching and game playing.

● LO3: Design and evaluate intelligent expert models for perception and prediction
from an intelligent environment.

● LO4: Formulate valid solutions for problems involving uncertain inputs or outcomes
by using decision making techniques.

● LO5: Examine the issues involved in knowledge bases, reasoning systems and
planning.

● LO6: Understand and implement the procedures for machine learning algorithms

Outline of the Paper:

88

UNIT Topic Hours External
Marks

Internal
Marks

I Overview and Problem Solving Techniques 15 18

19II
Knowledge Representation using Logic and

Reasoning
15 19

III Introduction to Machine Learning 15 19

IV Practical 30 19 6

CONTENTS

UNIT I 15 Hours
Overview and Problem Solving Techniques: Definition of AI, foundations of AI, AI
technique, State space, defining a problem as a state space, Uninformed search strategies -
Breadth-First, Depth-First, Iterative deepening, Heuristic functions, Heuristic search
strategies (Best-First Search, A*, Hill climbing search, Steepest Ascent Hill climbing),
Problem Reduction search: AO* algorithm, Constraint satisfaction problems, Game Playing
(Overview, Minimax algorithm, alpha-beta pruning)

UNIT II 15 Hours
Knowledge Representation using Logic and Reasoning: Knowledge representation using
logic, representing facts in logic, representing instances and ISA relationships, computable
functions and predicates, resolution, conversion to clausal form, basis of resolution,
resolution in propositional logic, unification, resolution in predicate logic, question
answering, Representation of knowledge using rules: Procedural vs. Declarative Knowledge,
Logic Programming, Forward vs. Backward Reasoning, Matching, Control Knowledge.

UNIT III 15 Hours
Introduction to Machine Learning : Machine Learning basics, Applications of ML,Data
Mining Vs Machine Learning vs Big Data Analytics. Supervised Learning: Naïve Base
Classifier, Classifying with k-Nearest Neighbour classifier, Decision Tree classifier.
Unsupervised Learning: Grouping unlabeled items using k-means clustering. Association
rule mining: Analysis with the Apriori algorithm Introduction to reinforcement learning.

UNIT IV 30 Hours
Suggested Basic Experiments:

1. Implementation of Breadth First Search using Python.
2. Implementation of Depth First Search using Python.
3. Implementation of Hill Climbing Algorithm.
4. Implementation of A* Algorithm.
5. Implementation of AO* Algorithm.
6. Implementation of Tic-Tac-Toe game using Python.
7. Implementation of an 8-Puzzle problem using Python.
8. Implementation of the Water-Jug problem using Python.
9. Implementation of Travelling Salesman Problem using Python.
10. Implementation of Tower of Hanoi using Python.
11. Implementation of Alpha-Beta Pruning using Python.
12. Implementation of Linear Regression.
13. Implementation of Logistic regression.
14. Implementation of Decision tree classification.
15. Implementation of Naïve Bayes classifier algorithm.
16. Implementation of K-nearest Neighbour.

89

Total 75 75 25

17. Implementation of K-means Clustering.

Suggested Advance Experiments:

1. Write a function to perform BFS on a given graph represented as an adjacency matrix
or adjacency list.

a. Implement BFS to find the shortest path between two nodes in a graph.
b. Visualise the traversal path of BFS on a graphical representation of a maze.

2. Implement DFS using recursion to traverse a binary tree and print out the nodes in
preorder, inorder, and postorder traversal.

a. Write a function to perform DFS on a given graph and return the path from the
start node to a goal node.

b. Develop a program to generate and visualise a maze, and then use DFS to find
a path from the start to the exit.

3. Write a program to implement Iterative Deepening Search (IDS) to solve the Eight
Queens Puzzle.

a. Implement IDS to find the shortest path between two nodes in a graph
represented as an adjacency matrix.

b. Compare the performance of BFS, DFS, and IDS on large graphs in terms of
time and memory usage.

4. Write a function to implement the A* search algorithm to find the shortest path
between two points on a map.

a. Implement A* search to solve the N-puzzle problem (Sliding Puzzle).
5. Write a Constraint Satisfaction Problems (CSP) solver to solve a Sudoku puzzle using

backtracking with constraint propagation.
a. Implement a CSP solver to solve the N-Queens problem using the Minimum

Remaining Values (MRV) heuristic and Forward Checking.
6. Write a program to implement the Minimax algorithm with alpha-beta pruning to play

Tic-Tac-Toe against an AI opponent.
7. Write a python program to implement a Naïve Bayes classifier to classify emails as

spam or non-spam. Train the classifier using a labelled dataset and evaluate its
performance on a separate test dataset.

8. Develop a python script to classify handwritten digits from the MNIST dataset using
the k-Nearest Neighbors classifier. Experiment with different values of k and evaluate
the classifier's accuracy.

9. Implement a decision tree classifier in Python to predict the species of iris flowers
using the famous Iris dataset. Train the classifier and visualise the resulting decision
tree.

10. Write a Python program to perform k-means clustering on a dataset containing
unlabeled items (e.g., customer data). Visualise the clusters and analyse their
characteristics.

11. Develop a Python script to mine association rules from a transaction dataset (e.g.,
market basket analysis) using the Apriori algorithm. Display the generated association
rules along with their support and confidence values.

90

12. Implement a simple reinforcement learning environment in Python, such as a
grid-world navigation problem. Use Q-learning to train an agent to navigate from a
starting point to a goal while avoiding obstacles.

Instructions to Paper Setter (Theory Examination):
● Questions should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED Marks

I 2 1 18

II 2 1 19

III 2 1 19

Instructions to Paper Setter (Practical Examination):
● Two sets of question papers should be set according to the following scheme

UNIT QUESTIONS

TO BE SET TO BE ANSWERED Marks

I 2 1 6

II 2 1 6

III 2 1 7

Exam Duration:

THEORY PRACTICAL

2 hours1
2

3 hours

Distribution of marks for practical
10% : Syntax and input/output screens
30% : Logic and efficiency (source code, pseudocode, and algorithm)
20% : Error trapping (illegal or invalid input, stack overflow, underflow, insufficient

physical memory, etc
20% : Completion
20% : Result

91

Recommended Reading:

Text Books:
1. S. J. Russell and P. Norvig, “Artificial Intelligence: A Modern Approach”, 4th Edition,

Pearson Education Inc., 2022

2. E.Rich, K. Knight and S.B. Nair, “Artificial Intelligence”, 3rd Edition, Tata

McGraw-Hill, 2017

Reference Books:

1. G. F. Luger, “Artificial Intelligence: Structures and Strategies for Complex Problem
Solving”, 6th Edition, Pearson Education Inc., 2021

2. N. Walkins, “Artificial Intelligence: The Ultimate Guide to AI, The Internet of Things,
Machine Learning, Deep Learning + a Comprehensive Guide to Robotics”, Amazon
Digital Services LLC, 2019

3. M. Negnevitsky, “Artificial Intelligence: A Guide to Intelligent Systems”, 2ndEdition,
New Delhi: Pearson Education Inc., 2002

92

